1887

Abstract

Staphylococcus epidermidis is a significant opportunistic pathogen of humans. The ST2 lineage is frequently multidrug-resistant and accounts for most of the clinical disease worldwide. However, there are no publically available, closed ST2 genomes and pathogenesis studies have not focused on these strains. We report the complete genome and methylome of BPH0662, a multidrug-resistant, hospital-adapted, ST2 S. epidermidis, and describe the correlation between resistome and phenotype, as well as demonstrate its relationship to publically available, international ST2 isolates. Furthermore, we delineate the methylome determined by the two type I restriction modification systems present in BPH0662 through heterologous expression in Escherichia coli, allowing the assignment of each system to its corresponding target recognition motif. As the first, to our knowledge, complete ST2 S. epidermidis genome, BPH0662 provides a valuable reference for future genomic studies of this clinically relevant lineage. Defining the methylome and the construction of these E. coli hosts provides the foundation for the development of molecular tools to bypass restriction modification systems in this lineage that has hitherto proven intractable.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000077
2016-09-20
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/9/mgen000077.html?itemId=/content/journal/mgen/10.1099/mgen.0.000077&mimeType=html&fmt=ahah

References

  1. Alikhan N. F., Petty N. K., Ben Zakour N. L., Beatson S. A.. 2011; BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics12:402–412 [CrossRef][PubMed]
    [Google Scholar]
  2. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al. 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  3. Barbier F., Ruppé E., Hernandez D., Lebeaux D., Francois P., Felix B., Desprez A., Maiga A., Woerther P. L. et al. 2010; Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IVa between Staphylococcus epidermidis and major clones of methicillin-resistant Staphylococcus aureus. J Infect Dis202:270–281 [CrossRef][PubMed]
    [Google Scholar]
  4. Becker K., Heilmann C., Peters G.. 2014; Coagulase-negative staphylococci. Clin Microbiol Rev27:870–926 [CrossRef][PubMed]
    [Google Scholar]
  5. Berglund C., Ito T., Ikeda M., Ma X. X., Söderquist B., Hiramatsu K.. 2008; Novel type of Staphylococcal cassette chromosome mec in a methicillin-resistant Staphylococcus aureus strain isolated in Sweden. Antimicrob Agents Chemother52:3512–3516 [CrossRef][PubMed]
    [Google Scholar]
  6. Boundy S., Safo M. K., Wang L., Musayev F. N., O'Farrell H. C., Rife J. P., Archer G. L.. 2013; Characterization of the Staphylococcus aureus rRNA methyltransferase encoded by orfX, the gene containing the staphylococcal chromosome cassette mec (SCCmec) insertion site. J Biol Chem288:132–140 [CrossRef][PubMed]
    [Google Scholar]
  7. Casadesús J., Low D.. 2006; Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev70:830–856 [CrossRef][PubMed]
    [Google Scholar]
  8. Cherepanov P. P., Wackernagel W.. 1995; Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene158:9–14 [CrossRef][PubMed]
    [Google Scholar]
  9. Clinical and Laboratory Standards Institute 2012; Methods for Dilution and Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9 edn. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  10. Conlan S., Mijares L. A., Becker J., Blakesley R. W., Bouffard G. G., Brooks S., Coleman H., Gupta J., Gurson N. et al. 2012; Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol13:R64 NISC Comparative Sequencing Program [CrossRef][PubMed]
    [Google Scholar]
  11. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  12. DeBoy R. T., Mongodin E. F., Emerson J. B., Nelson K. E.. 2006; Chromosome evolution in the Thermotogales: large-scale inversions and strain diversification of CRISPR sequences. J Bacteriol188:2364–2374 [CrossRef][PubMed]
    [Google Scholar]
  13. Gao W., Cameron D. R., Davies J. K., Kostoulias X., Stepnell J., Tuck K. L., Yeaman M. R., Peleg A. Y., Stinear T. P., Howden B. P.. 2013; The RpoB H481Y rifampicin resistance mutation and an active stringent response reduce virulence and increase resistance to innate immune responses in Staphylococcus aureus. J Infect Dis207:929–939 [CrossRef][PubMed]
    [Google Scholar]
  14. Gao W., Gladman S. L., Seemann T., Stinear T. P., Howden B. P., Monk I. R., Tobias N. J.. 2015; Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus. Microbial Genomics1: [CrossRef]
    [Google Scholar]
  15. Gazzola S., Pietta E., Bassi D., Fontana C., Puglisi E., Cappa F., Cocconcelli P. S.. 2013; Draft genome sequence of vancomycin-heteroresistant Staphylococcus epidermidis strain UC7032, isolated from food. Genome Announc1:e0070900713 [CrossRef][PubMed]
    [Google Scholar]
  16. Gill S. R., Fouts D. E., Archer G. L., Mongodin E. F., Deboy R. T., Ravel J., Paulsen I. T., Kolonay J. F., Brinkac L. et al. 2005; Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol187:2426–2438 [CrossRef][PubMed]
    [Google Scholar]
  17. Goncalves da Silva A.. 2015; Pairwise_SNP_differences: an R script to summarise SNP differences among groups of samples. https://github.com/MDU-PHL/pairwise_snp_differences.git Accessed on 20 April 2016
  18. Gordon R. J., Miragaia M., Weinberg A. D., Lee C. J., Rolo J., Giacalone J. C., Slaughter M. S., Pappas P., Naka Y. et al. 2012; Staphylococcus epidermidis colonization is highly clonal across US cardiac centers. J Infect Dis205:1391–1398 [CrossRef][PubMed]
    [Google Scholar]
  19. Grissa I., Vergnaud G., Pourcel C.. 2007; CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res35:W52–57 [CrossRef][PubMed]
    [Google Scholar]
  20. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  21. Hanssen A. M., Sollid J. U.. 2007; Multiple Staphylococcal cassette chromosomes and allelic variants of cassette chromosome recombinases in Staphylococcus aureus and coagulase-negative staphylococci from Norway. Antimicrob Agents Chemother51:1671–1677 [CrossRef][PubMed]
    [Google Scholar]
  22. Harris S. R., Feil E. J., Holden M. T., Quail M. A., Nickerson E. K., Chantratita N., Gardete S., Tavares A., Day N. et al. 2010; Evolution of MRSA during hospital transmission and intercontinental spread. Science327:469–474 [CrossRef][PubMed]
    [Google Scholar]
  23. Harrison P.. 2014; Nesoni : High throughput sequencing analysis tools. https://github.com/Victorian-Bioinformatics-Consortium/nesoni.git Accessed on 25 March 2015
  24. Hellmark B., Unemo M., Nilsdotter-Augustinsson A., Söderquist B.. 2009; Antibiotic susceptibility among Staphylococcus epidermidis isolated from prosthetic joint infections with special focus on rifampicin and variability of the rpoB gene. Clin Microbiol Infect15:238–244 [CrossRef][PubMed]
    [Google Scholar]
  25. Hiramatsu K., Aritaka N., Hanaki H., Kawasaki S., Hosoda Y., Hori S., Fukuchi Y., Kobayashi I.. 1997a; Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. The Lancet350:1670–1673 [CrossRef]
    [Google Scholar]
  26. Hiramatsu K., Hanaki H., Ino T., Yabuta K., Oguri T., Tenover F. C.. 1997b; Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother40:135–136 [CrossRef][PubMed]
    [Google Scholar]
  27. International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC) 2009; Classification of Staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother53:4961–4967 [CrossRef][PubMed]
    [Google Scholar]
  28. Khokhlova O. E., Hung W. C., Wan T. W., Iwao Y., Takano T., Higuchi W., Yachenko S. V., Teplyakova O. V., Kamshilova V. V. et al. 2015; Healthcare- and community-associated methicillin-resistant Staphylococcus aureus (MRSA) and fatal pneumonia with pediatric deaths in Krasnoyarsk, Siberian Russia: unique MRSA's multiple virulence factors, genome, and stepwise evolution. PLoS One10:e0128017 [CrossRef][PubMed]
    [Google Scholar]
  29. Krediet T. G., Mascini E. M., van Rooij E., Vlooswijk J., Paauw A., Gerards L. J., Fleer A.. 2004; Molecular epidemiology of coagulase-negative staphylococci causing sepsis in a neonatal intensive care unit over an 11-year period. J Clin Microbiol42:992–995 [CrossRef][PubMed]
    [Google Scholar]
  30. Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S. J., Marra M. A.. 2009; Circos: an information aesthetic for comparative genomics. Genome Res19:1639–1645 [CrossRef][PubMed]
    [Google Scholar]
  31. Lampson B. C., Parisi J. T.. 1986a; Nucleotide sequence of the constitutive macrolide-lincosamide-streptogramin B resistance plasmid pNE131 from Staphylococcus epidermidis and homologies with Staphylococcus aureus plasmids pE194 and pSN2. J Bacteriol167:888–892
    [Google Scholar]
  32. Lampson B. C., Parisi J. T.. 1986b; Naturally-occurring Staphylococcus epidermidis plasmid expressing constitutive macrolide-lincosamide-streptogramin-B resistance contains a deleted attenuator. J Bacteriol166:479–483
    [Google Scholar]
  33. Lechner M., Findeiß S., Steiner L., Marz M., Stadler P. F., Prohaska S. J.. 2011; Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics12:124 [CrossRef][PubMed]
    [Google Scholar]
  34. Lindsay J. A., Holden M. T. G.. 2007; The staphylococci: a postgenomic view. In Bacterial Pathogenomics, pp.835–842 Edited by Pallen M. J., Wren B. W.. Nature;
    [Google Scholar]
  35. Ma X. X., Wang E. H., Liu Y., Luo E. J.. 2011; Antibiotic susceptibility of coagulase-negative staphylococci (CoNS): emergence of teicoplanin-non-susceptible CoNS strains with inducible resistance to vancomycin. J Med Microbiol60:1661–1668 [CrossRef][PubMed]
    [Google Scholar]
  36. Matsuo M., Hishinuma T., Katayama Y., Cui L., Kapi M., Hiramatsu K.. 2011; Mutation of RNA polymerase β subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3. Antimicrob Agents Chemother55:4188–4195 [CrossRef][PubMed]
    [Google Scholar]
  37. Mendes R. E., Deshpande L. M., Costello A. J., Farrell D. J.. 2012; Molecular epidemiology of Staphylococcus epidermidis clinical isolates from U.S. hospitals. Antimicrob Agents Chemother56:4656–4661 [CrossRef][PubMed]
    [Google Scholar]
  38. Miragaia M., Thomas J. C., Couto I., Enright M. C., de Lencastre H.. 2007; Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol189:2540–2552 [CrossRef][PubMed]
    [Google Scholar]
  39. Monk I. R., Shah I. M., Xu M., Tan M. W., Foster T. J.. 2012; Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio3:e0027711 [CrossRef][PubMed]
    [Google Scholar]
  40. Monk I. R., Tree J. J., Howden B. P., Stinear T. P., Foster T. J.. 2015; Complete bypass of restriction systems for major Staphylococcus aureus Lineages. MBio6:e0030800315 [CrossRef][PubMed]
    [Google Scholar]
  41. Murray N. E.. 2000; Type I restriction systems: Sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev64:412–434 [CrossRef][PubMed]
    [Google Scholar]
  42. Nakipoglu Y., Derbentli S., Cagatay A. A., Katranci H.. 2005; Investigation of Staphylococcus strains with heterogeneous resistance to glycopeptides in a Turkish university hospital. BMC Infect Dis5:31 [CrossRef][PubMed]
    [Google Scholar]
  43. Otto M.. 2009; Staphylococcus epidermidis–the 'accidental' pathogen. Nat Rev Microbiol7:555–567 [CrossRef][PubMed]
    [Google Scholar]
  44. Pightling A. W., Petronella N., Pagotto F.. 2014; Choice of reference sequence and assembler for alignment of Listeria monocytogenes short-read sequence data greatly influences rates of error in SNP analyses. PLoS One9:e104579 [CrossRef][PubMed]
    [Google Scholar]
  45. Powell D.. 2015; FriPan: Interactive web tool for exploring pan-genome of bacterial strains. https://github.com/drpowell/FriPan Accessed on 20 April 2016
  46. Roach D. J., Burton J. N., Lee C., Stackhouse B., Butler-Wu S. M., Cookson B. T., Shendure J., Salipante S. J.. 2015; A year of infection in the intensive care unit: prospective whole genome sequencing of bacterial clinical isolates reveals cryptic transmissions and novel microbiota. PLoS Genet11:e1005413 [CrossRef][PubMed]
    [Google Scholar]
  47. Roberts R. J., Belfort M., Bestor T., Bhagwat A. S., Bickle T. A., Bitinaite J., Blumenthal R. M., Degtyarev S. K. H., Dryden D. T. et al. 2003; A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res31:1805–1812 [CrossRef][PubMed]
    [Google Scholar]
  48. Rouch D. A., Skurray R. A.. 1989; IS257 from Staphylococcus aureus: member of an insertion sequence superfamily prevalent among Gram-positive and Gram-negative bacteria. Gene76:195–205 [CrossRef][PubMed]
    [Google Scholar]
  49. Savijoki K., Iivanainen A., Siljamäki P., Laine P. K., Paulin L., Karonen T., Pyörälä S., Kankainen M., Nyman T. A. et al. 2014; Genomics and proteomics provide new insight into the commensal and pathogenic lifestyles of bovine- and human-associated Staphylococcus epidermidis strains. J Proteome Res13:3748–3762 [CrossRef]
    [Google Scholar]
  50. Seemann T.. 2014; Prokka: rapid prokaryotic genome annotation. Bioinformatics30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  51. Seemann T.. 2016a; Snippy: Rapid bacterial SNP calling and core genome alignments. https://github.com/tseemann/snippy.git Accessed on 20 April 2016
  52. Seemann T.. 2016b; MLST: Scan contig files against PubMLST typing schemes. https://github.com/tseemann/mlst.git Accessed on 4 April 2016
  53. Sieradzki K., Villari P., Tomasz A.. 1998; Decreased susceptibilities to teicoplanin and vancomycin among coagulase-negative methicillin-resistant clinical isolates of staphylococci. Antimicrob Agents Chemother42:100–107[PubMed]
    [Google Scholar]
  54. Sieradzki K., Roberts R. B., Serur D., Hargrave J., Tomasz A.. 1999; Heterogeneously vancomycin-resistant Staphylococcus epidermidis strain causing recurrent peritonitis in a dialysis patient during vancomycin therapy. J Clin Microbiol37:39–44[PubMed]
    [Google Scholar]
  55. Sievert D. M., Ricks P., Edwards J. R., Schneider A., Patel J., Srinivasan A., Kallen A., Limbago B., Fridkin S. et al. 2013; Antimicrobial-resistant pathogens associated with healthcare-associated infections summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Cont Hosp Epidemiol34:1–14 [CrossRef]
    [Google Scholar]
  56. Tenover F. C., Moellering R. C.. 2007; The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin Infect Dis44:1208–1215 [CrossRef][PubMed]
    [Google Scholar]
  57. Walsh P., Bekaert M., Carroll J., Manning T., Kelly B., O'Driscoll A., Lu X., Smith C., Dickinson P. et al. 2015; Draft genome sequences of six different Staphylococcus epidermidis clones, isolated individually from preterm neonates presenting with sepsis at Edinburgh's Royal Infirmary. Genome Announc3:e0047115 [CrossRef][PubMed]
    [Google Scholar]
  58. Watanabe S., Ito T., Morimoto Y., Takeuchi F., Hiramatsu K.. 2007; Precise excision and self-integration of a composite transposon as a model for spontaneous large-scale chromosome inversion/deletion of the Staphylococcus haemolyticus clinical strain JCSC1435. J Bacteriol189:2921–2925 [CrossRef][PubMed]
    [Google Scholar]
  59. Widerström M., McCullough C. A., Coombs G. W., Monsen T., Christiansen K. J.. 2012; A multidrug-resistant Staphylococcus epidermidis clone (ST2) is an ongoing cause of hospital-acquired infection in a Western Australian hospital. J Clin Microbiol50:2147–2151 [CrossRef][PubMed]
    [Google Scholar]
  60. Wood D. E., Salzberg S. L.. 2014; Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol15:R46 [CrossRef][PubMed]
    [Google Scholar]
  61. Wootton M., Howe R. A., Hillman R., Walsh T. R., Bennett P. M., MacGowan A. P.. 2001; A modified population analysis profile (PAP) method to detect hetero-resistance to vancomycin in Staphylococcus aureus in a UK hospital. J Antimicrob Chemother47:399–403 [CrossRef][PubMed]
    [Google Scholar]
  62. Zhang L., Morrison M., Ó Cuív P., Evans P., Rickard C. M.. 2012; Genome sequence of Staphylococcus epidermidis strain AU12-03, isolated from an intravascular catheter. J Bacteriol194:6639 [CrossRef][PubMed]
    [Google Scholar]
  63. Zhang Y. Q., Ren S. X., Li H. L., Wang Y. X., Fu G., Yang J., Qin Z. Q., Miao Y. G., Wang W. Y. et al. 2003; Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol49:1577–1593 [CrossRef][PubMed]
    [Google Scholar]
  64. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S.. 2011; PHAST: a fast phage search tool. Nucleic Acids Res39:W347–352 [CrossRef][PubMed]
    [Google Scholar]
  65. Chong, T. M., Ng, K. T. & Chan, K. G. NCBI GenBank; BioProject PRJNA246628: accession number JQHC00000000.1 2014
  66. Lee, J. Y. H., Monk I. R., Pidot S. J., Singh S., Chua, K. Y. L., Seemann T., Stinear, T. P. & Howden B. P. European Nucleotide Archive; study accessionPRJEB13975 samples ERS1153932-ERS1153934 2016
  67. Lee, J. Y. H., Monk I. R., Pidot S. J., Singh S., Chua, K. Y. L., Seemann T., Stinear, T. P. & Howden B. P. European Nucleotide Archive; study accessionPRJEB13975 assembly GCA_900086615.1 2016
  68. Lee, J. Y. H., Monk I. R., Pidot S. J., Singh S., Chua, K. Y. L., Seemann T., Stinear, T. P. & Howden B. P. European Nucleotide Archive; study accessionPRJEB12090 samples ERS1019848-ERS1019849 2016
  69. Roach, D. J., Burton, J. N., Lee, C., Stackhouse, B., Butler-Wu, S. M., Cookson, B. T., Shendure, J. & Salipante, S. J. NCBI GenBank; BioProject PRJNA267549: accession numbers JWGV00000000.1, JWGA00000000.1, JWFU00000000.1, JWFC00000000.1, JVZO00000000.1, JVYY00000000.1, JVAT00000000.1, JVAK00000000.1, JUYX00000000.1, JUXM00000000.1, JUTU00000000.1, JUPV00000000.1, JULL00000000.1 2014
  70. Walsh, P., Bekaert, M., Carroll, J., Manning, T., Kelly, B., O’Driscoll, A., Lu, X., Smith, C., Dickinson, P. & other authors. NCBI GenBank; BioProject PRJNA255947: accession number JZUM00000000.1 2015
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000077
Loading
/content/journal/mgen/10.1099/mgen.0.000077
Loading

Data & Media loading...

Supplementary File 1

PDF

Supplementary File 2

PDF

Supplementary File 3

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error