1887

Abstract

The discovery of novel antigens is an essential requirement in devising new diagnostics or vaccines for use in control programmes against human tuberculosis (TB) and bovine tuberculosis (bTB). Identification of potential epitopes recognised by CD4 T cells requires prediction of peptide binding to MHC class-II, an obligatory prerequisite for T cell recognition. To comprehensively prioritise potential MHC-II-binding epitopes from Mycobacterium bovis, the agent of bTB and zoonotic TB in humans, we integrated three binding prediction methods with the M. bovisproteome using a subset of human HLA alleles to approximate the binding of epitope-containing peptides to the bovine MHC class II molecule BoLA-DRB3. Two parallel strategies were then applied to filter the resulting set of binders: identification of the top-scoring binders or clusters of binders. Our approach was tested experimentally by assessing the capacity of predicted promiscuous peptides to drive interferon-γ secretion from T cells of M. bovis infected cattle. Thus, 376 20-mer peptides, were synthesised (270 predicted epitopes, 94 random peptides with low predictive scores and 12 positive controls of known epitopes). The results of this validation demonstrated significant enrichment (>24 %) of promiscuously recognised peptides predicted in our selection strategies, compared with randomly selected peptides with low prediction scores. Our strategy offers a general approach to the identification of promiscuous epitopes tailored to target populations where there is limited knowledge of MHC allelic diversity.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000071
2016-08-25
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/8/mgen000071.html?itemId=/content/journal/mgen/10.1099/mgen.0.000071&mimeType=html&fmt=ahah

References

  1. Baxter R., Hastings N., Law A., Glass E. J.. 2008; A rapid and robust sequence-based genotyping method for BoLA-DRB3 alleles in large numbers of heterozygous cattle. Anim Genet39:561–563 [CrossRef][PubMed]
    [Google Scholar]
  2. Behl J. D., Verma N. K., Tyagi N., Mishra P., Behl R., Joshi B. K.. 2012; The major histocompatibility complex in bovines: a review. ISRN Vet Sci2012:872710 [CrossRef][PubMed]
    [Google Scholar]
  3. Bian H., Hammer J.. 2004; Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE. Methods34:468–475 [CrossRef][PubMed]
    [Google Scholar]
  4. Bremel R. D., Homan E. J.. 2010; An integrated approach to epitope analysis II: A system for proteomic-scale prediction of immunological characteristics. Immunome Res6:8 [CrossRef][PubMed]
    [Google Scholar]
  5. Chaves F. A., Lee A. H., Nayak J. L., Richards K. A., Sant A. J.. 2012; The utility and limitations of current web-available algorithms to predict peptides recognized by CD4 T cells in response to pathogen infection. J Immunol188:4235–4248 [CrossRef][PubMed]
    [Google Scholar]
  6. Codner, G. F.. 2010; Assessing MHC class I diversity in dairy cattle populations, PhD Thesis University of Glasgow;
    [Google Scholar]
  7. De Groot A. S., Martin W.. 2009; Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin Immunol131:189–201 [CrossRef][PubMed]
    [Google Scholar]
  8. Dietz A. B., Cohen N. D., Timms L., Kehrli M. E.. 1997; Bovine lymphocyte antigen class II alleles as risk factors for high somatic cell counts in milk of lactating dairy cows. J Dairy Sci80:406–412 [CrossRef][PubMed]
    [Google Scholar]
  9. Ester M., Kriegel H., Sander J., Xu X.. 1996; A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc 2nd Int Conf Knowl Discov Data Min , pp.226–231 AAAI Press;
    [Google Scholar]
  10. Farrell D., Gordon S. V.. 2015; Epitopemap: a web application for integrated whole proteome epitope prediction. BMC Bioinformatics16:221 [CrossRef][PubMed]
    [Google Scholar]
  11. Gaseitsiwe S., Valentini D., Mahdavifar S., Reilly M., Ehrnst A., Maeurer M.. 2010; Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401. Clin Vaccine Immunol17:168–175 [CrossRef][PubMed]
    [Google Scholar]
  12. Geluk A., van Meijgaarden K. E., Joosten S. A., Commandeur S., Ottenhoff T. H.. 2014; Innovative strategies to identify M. tuberculosis antigens and epitopes using genome-wide analyses. Front Immunol5:1–8 [CrossRef][PubMed]
    [Google Scholar]
  13. Gurung R. B., Purdie A. C., Begg D. J., Whittington R. J.. 2012; In silico identification of epitopes in Mycobacterium avium subsp. paratuberculosis proteins that were upregulated under stress conditions. Clin Vaccine Immunol19:855–864 [CrossRef][PubMed]
    [Google Scholar]
  14. Hammond A. S., Klein M. R., Corrah T., Fox A., Jaye A., McAdam K. P., Brookes R. H.. 2005; Mycobacterium tuberculosis genome-wide screen exposes multiple CD8+ T cell epitopes. Clin Exp Immunol140:109–116 [CrossRef][PubMed]
    [Google Scholar]
  15. Hogarth P. J., Hewinson R. G., Vordermeier H. M.. 2006; Development of vaccines against bovine tuberculosis. J Pharm Pharmacol58:749–757 [CrossRef][PubMed]
    [Google Scholar]
  16. Hoze E., Tsaban L., Maman Y., Louzoun Y.. 2013; Predictor for the effect of amino acid composition on CD4+ T cell epitopes preprocessing. J Immunol Methods391:163–173 [CrossRef][PubMed]
    [Google Scholar]
  17. Jones G. J., Gordon S. V., Hewinson R. G., Vordermeier H. M.. 2010; Screening of predicted secreted antigens from Mycobacterium bovis reveals the immunodominance of the ESAT-6 protein family. Infect Immun78:1326–1332 [CrossRef][PubMed]
    [Google Scholar]
  18. Jones G. J., Bagaini F., Hewinson R. G., Vordermeier H. M.. 2011; The use of binding-prediction models to identify M. bovis-specific antigenic peptides for screening assays in bovine tuberculosis. Vet Immunol Immunopathol141:239–245 [CrossRef][PubMed]
    [Google Scholar]
  19. Jørgensen K. W., Buus S., Nielsen M.. 2010; Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes. PLoS One5:e15877 [CrossRef][PubMed]
    [Google Scholar]
  20. Karosiene E., Rasmussen M., Blicher T., Lund O., Buus S., Nielsen M.. 2013; NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics65:711–724 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim Y., Ponomarenko J., Zhu Z., Tamang D., Wang P., Greenbaum J., Lundegaard C., Sette A., Lund O. et al. 2012; Immune epitope database analysis resource. Nucleic Acids Res40:W525–W530 [CrossRef][PubMed]
    [Google Scholar]
  22. Liao Y. C., Lin H. H., Lin C. H., Chung W. B.. 2013; Identification of cytotoxic T lymphocyte epitopes on swine viruses: multi-epitope design for universal T cell vaccine. PLoS One8:e8444384448 [CrossRef][PubMed]
    [Google Scholar]
  23. Lindestam Arlehamn C. S., Gerasimova A., Mele F., Henderson R., Swann J., Greenbaum J. A., Kim Y., Sidney J., James E. A. et al. 2013; Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog9:e1003130 [CrossRef][PubMed]
    [Google Scholar]
  24. Lindestam Arlehamn C. S., Sette A.. 2014; Definition of CD4 immunosignatures associated with MTB. Front Immunol5:1–7 [CrossRef][PubMed]
    [Google Scholar]
  25. Lundegaard C., Hoof I., Lund O., Nielsen M.. 2010; State of the art and challenges in sequence based T-cell epitope prediction. Immunome Res6:S3 [CrossRef][PubMed]
    [Google Scholar]
  26. Lundegaard C., Lund O., Nielsen M.. 2012; Predictions versus high-throughput experiments in T-cell epitope discovery: competition or synergy?. Expert Rev Vaccines11:43–54 [CrossRef][PubMed]
    [Google Scholar]
  27. Mikko S., Andersson L.. 1995; Extensive MHC class II DRB3 diversity in African and European cattle. Immunogenetics42:408–413 [CrossRef][PubMed]
    [Google Scholar]
  28. Mustafa A. S.. 2009; Th1 cell reactivity and HLA-DR binding prediction for promiscuous recognition of MPT63 (Rv1926c), a major secreted protein of Mycobacterium tuberculosis. Scand J Immunol69:213–222 [CrossRef][PubMed]
    [Google Scholar]
  29. Nielsen M., Lundegaard C., Blicher T., Peters B., Sette A., Justesen S., Buus S., Lund O.. 2008; Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol4:e1000107 [CrossRef][PubMed]
    [Google Scholar]
  30. Nielsen M., Lund O., Buus S., Lundegaard C.. 2010; MHC class II epitope predictive algorithms. Immunology130:319–328 [CrossRef][PubMed]
    [Google Scholar]
  31. Oprzadek J., Urtnowski P., Sender G., Pawlik A., Łukaszewicz M.. 2012; Frequency of BoLA-DRB3 alleles in Polish Holstein–Friesian cattle. Anim Sci Pap Reports30:91–101
    [Google Scholar]
  32. Parry C. S.. 2008; Flanking p10 contribution and sequence bias in matrix based epitope prediction: revisiting the assumption of independent binding pockets. BMC Struct Biol8:44 [CrossRef][PubMed]
    [Google Scholar]
  33. Patronov A., Doytchinova I.. 2013; T-cell epitope vaccine design by immunoinformatics. Open Biol3:120139 [CrossRef][PubMed]
    [Google Scholar]
  34. Paul S., Weiskopf D., Angelo M. A., Sidney J., Peters B., Sette A.. 2013; HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J Immunol191:5831–5839 [CrossRef][PubMed]
    [Google Scholar]
  35. Petersen B., Petersen T. N., Andersen P., Nielsen M., Lundegaard C.. 2009; A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol9:51 [CrossRef][PubMed]
    [Google Scholar]
  36. Raddrizzani L., Hammer J.. 2000; Epitope scanning using virtual matrix-based algorithms. Brief Bioinform1:179–189 [CrossRef][PubMed]
    [Google Scholar]
  37. Robinson J., Mistry K., McWilliam H., Lopez R., Marsh S. G.. 2010; IPD–the Immuno Polymorphism Database. Nucleic Acids Res38:D863–869 [CrossRef][PubMed]
    [Google Scholar]
  38. Robinson J., Halliwell J. A., McWilliam H., Lopez R., Parham P., Marsh S. G.. 2013; The IMGT/HLA database. Nucleic Acids Res41:D1222–1227 [CrossRef][PubMed]
    [Google Scholar]
  39. Santos A. R., Pereira V. B., Barbosa E., Baumbach J., Pauling J., Röttger R., Turk M. Z., Silva A., Miyoshi A., Azevedo V.. 2013; Mature epitope density–a strategy for target selection based on immunoinformatics and exported prokaryotic proteins. BMC Genomics14:S4 [CrossRef][PubMed]
    [Google Scholar]
  40. Schubert B., Lund O., Nielsen M.. 2013a; Evaluation of peptide selection approaches for epitope-based vaccine design. Tissue Antigens82:243–251 [CrossRef]
    [Google Scholar]
  41. Schubert O. T., Mouritsen J., Ludwig C., Röst H. L., Rosenberger G., Arthur P. K., Claassen M., Campbell D. S., Sun Z. et al. 2013b; The Mtb Proteome Library: A resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. Cell Host & Microbe13:602–612 [CrossRef]
    [Google Scholar]
  42. Sette A., Fleri W., Peters B., Sathiamurthy M., Bui H. H., Wilson S.. 2005; A roadmap for the immunomics of category A-C pathogens. Immunity22:155–161 [CrossRef][PubMed]
    [Google Scholar]
  43. Sette A., Peters B.. 2007; Immune epitope mapping in the post-genomic era: lessons for vaccine development. Curr Opin Immunol19:106–110 [CrossRef][PubMed]
    [Google Scholar]
  44. Sidders B., Pirson C., Hogarth P. J., Hewinson R. G., Stoker N. G., Vordermeier H. M., Ewer K.. 2008; Screening of highly expressed mycobacterial genes identifies Rv3615c as a useful differential diagnostic antigen for the Mycobacterium tuberculosis complex. Infect Immun76:3932–3939 [CrossRef][PubMed]
    [Google Scholar]
  45. Singh H., Raghava G. P.. 2001; ProPred: prediction of HLA-DR binding sites. Bioinformatics17:1236–1237 [CrossRef][PubMed]
    [Google Scholar]
  46. Sommer S., Courtiol A., Mazzoni C. J.. 2013; MHC genotyping of non-model organisms using next-generation sequencing: a new methodology to deal with artefacts and allelic dropout. BMC Genomics14:1 [CrossRef][PubMed]
    [Google Scholar]
  47. Sturniolo T., Bono E., Ding J., Raddrizzani L., Tuereci O., Sahin U., Braxenthaler M., Gallazzi F., Protti M. P. et al. 1999; Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol17:555–561 [CrossRef][PubMed]
    [Google Scholar]
  48. Vordermeier H. M., Whelan A., Cockle P. J., Farrant L., Palmer N., Hewinson R. G.. 2001; Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle. Clin Diagn Lab Immunol8:571–578 [CrossRef][PubMed]
    [Google Scholar]
  49. Vordermeier M., Whelan A. O., Hewinson R. G.. 2003; Recognition of mycobacterial epitopes by T cells across mammalian species and use of a program that predicts human HLA-DR binding peptides to predict bovine epitopes. Infect Immun71:1980–1987 [CrossRef][PubMed]
    [Google Scholar]
  50. Vordermeier M., Gordon S. V., Hewinson R. G.. 2011; Mycobacterium bovis antigens for the differential diagnosis of vaccinated and infected cattle. Vet Microbiol151:8–13 [CrossRef][PubMed]
    [Google Scholar]
  51. Wang P., Sidney J., Dow C., Mothé B., Sette A., Peters B.. 2008; A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol4:e1000048 [CrossRef][PubMed]
    [Google Scholar]
  52. Waters W. R., Palmer M. V., Buddle B. M., Vordermeier H. M.. 2012; Bovine tuberculosis vaccine research: historical perspectives and recent advances. Vaccine30:2611–2622 [CrossRef][PubMed]
    [Google Scholar]
  53. Weaver J. M., Lazarski C. A., Richards K. A., Chaves F. A., Jenks S. A., Menges P. R., Sant A. J.. 2008; Immunodominance of CD4 T cells to foreign antigens is peptide intrinsic and independent of molecular context: implications for vaccine design. J Immunol181:3039–3048 [CrossRef][PubMed]
    [Google Scholar]
  54. Westbrook C. J., Karl J. A., Wiseman R. W., Mate S., Koroleva G., Garcia K., Sanchez-Lockhart M., O'Connor D. H., Palacios G.. 2015; No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing. Hum Immunol76:891–896 [CrossRef][PubMed]
    [Google Scholar]
  55. Wu C., Zanker D., Valkenburg S., Tan B., Kedzierska K., Zou Q. M., Doherty P. C., Chen W.. 2011; Systematic identification of immunodominant CD8+ T-cell responses to influenza A virus in HLA-A2 individuals. Proc Natl Acad Sci U S A108:9178–9183 [CrossRef][PubMed]
    [Google Scholar]
  56. Zavasnik-Bergant T., Turk B.. 2007; Cysteine proteases: destruction ability versus immunomodulation capacity in immune cells. Biol Chem388:1141–1149 [CrossRef][PubMed]
    [Google Scholar]
  57. Zhang G. L., Khan A. M., Srinivasan K. N., Heiny A., Lee K., Kwoh C. K., August J. T., Brusic V.. 2008; Hotspot Hunter: a computational system for large-scale screening and selection of candidate immunological hotspots in pathogen proteomes. BMC Bioinformatics9:S19 [CrossRef][PubMed]
    [Google Scholar]
  58. Zhang H., Lund O., Nielsen M.. 2009; The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics25:1293–1299 [CrossRef][PubMed]
    [Google Scholar]
  59. Zhang L., Chen Y., Wong H. S., Zhou S., Mamitsuka H., Zhu S.. 2012; TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One7:e30483 [CrossRef][PubMed]
    [Google Scholar]
  60. Zvi A., Ariel N., Fulkerson J., Sadoff J. C., Shafferman A.. 2008; Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses. BMC Med Genomics1:18 [CrossRef][PubMed]
    [Google Scholar]
  61. Zvi A., Rotem S., Bar-Haim E., Cohen O., Shafferman A.. 2011; Whole-genome immunoinformatic analysis of F. tularensis: predicted CTL epitopes clustered in hotspots are prone to elicit a T-cell response. PLoS One6:e20050 [CrossRef][PubMed]
    [Google Scholar]
  62. Zvi A., Rotem S., Cohen O., Shafferman A.. 2012; Clusters versus affinity-based approaches in F. tularensis whole genome search of CTL epitopes. PLoS One7:e36440 [CrossRef][PubMed]
    [Google Scholar]
  63. Farrell, D., Zenodo, epitopepredict: v0.1.0, DOI: 10.5281/zenodo.49032 2016
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000071
Loading
/content/journal/mgen/10.1099/mgen.0.000071
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error