1887

Abstract

Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000070
2016-08-25
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/8/mgen000070.html?itemId=/content/journal/mgen/10.1099/mgen.0.000070&mimeType=html&fmt=ahah

References

  1. Allard M. W., Luo Y., Strain E., Pettengill J., Timme R., Wang C., Li C., Keys C. E., Zheng J. et al. 2013; On the evolutionary history population genetics and diversity among isolates of Salmonella Enteritidis PFGE pattern JEGX01.0004. PLoS One 8:e55254 [View Article][PubMed]
    [Google Scholar]
  2. Ashton P., Nair S., Peters T., Tewolde R., Day M., Doumith M., Green J., Jenkins C., Underwood A. et al. 2015; Revolutionising public health reference microbiology using whole genome sequencing: Salmonella as an exemplar. bioRxiv 33225:
    [Google Scholar]
  3. Baker K. S., Dallman T. J., Ashton P. M., Day M., Hughes G., Crook P. D., Gilbart V. L., Zittermann S., Allen V. G. et al. 2015; Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study. Lancet Infect Dis 15:913–921 [View Article][PubMed]
    [Google Scholar]
  4. Bryant J. M., Grogono D. M., Greaves D., Foweraker J., Roddick I., Inns T., Reacher M., Haworth C. S., Curran M. D. et al. 2013; Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. The Lancet 381:1551–1560 [View Article]
    [Google Scholar]
  5. Croucher N. J., Page A. J., Connor T. R., Delaney A. J., Keane J. A., Bentley S. D., Parkhill J., Harris S. R. 2015; Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 43:e15 [View Article][PubMed]
    [Google Scholar]
  6. Csardi G., Nepusz T. 2006; The igraph software package for complex network research. InterJournal Complex Syst 1695:1–9
    [Google Scholar]
  7. Dallman T. J., Ashton P. M., Byrne L., Perry N. T., Petrovska L., Ellis R. J., Allison L., Hanson M., Holmes A. et al. 2015b; Whole genome sequencing for national surveillance of Shiga toxin producing Escherichia coli O157. Clin Infect Dis 3:305–312
    [Google Scholar]
  8. Dallman T. J., Ashton P. M., Byrne L., Perry N. T., Petrovska L., Ellis R., Allison L., Hanson M., Holmes A., other authors. 2015a; Applying phylogenomics to understand the emergence of Shiga-toxin-producing Escherichia coli O157:H7 strains causing severe human disease in the UK. Microbial Genomics 1:
    [Google Scholar]
  9. den Bakker H. C., Allard M. W., Bopp D., Brown E. W., Fontana J., Iqbal Z., Kinney A., Limberger R., Musser K. A. et al. 2014; Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar enteritidis. Emerg Infect Dis 20:1306–1314 [View Article][PubMed]
    [Google Scholar]
  10. Deng X., Desai P. T., den Bakker H. C., Mikoleit M., Tolar B., Trees E., Hendriksen R. S., Frye J. G., Porwollik S. et al. 2014; Genomic epidemiology of Salmonella enterica serotype Enteritidis based on population structure of prevalent lineages. Emerg Infect Dis 20:1481–1489 [View Article][PubMed]
    [Google Scholar]
  11. Dray S., Dufour A.-B. et al. 2007; The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22:1–20 [View Article]
    [Google Scholar]
  12. Drummond A. J., Suchard M. A., Xie D., Rambaut A. 2012; Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29:1969–1973 [View Article][PubMed]
    [Google Scholar]
  13. Eyre D. W., Cule M. L., Wilson D. J., Griffiths D., Vaughan A., O'Connor L., Ip C. L., Golubchik T., Batty E. M. et al. 2013; Diverse sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med 369:1195–1205 [View Article][PubMed]
    [Google Scholar]
  14. Harker K. S., Lane C., Gormley F. J., Adak G. K. 2014; National outbreaks of Salmonella infection in the UK, 2000-2011. Epidemiol Infect 142:601–607 [View Article][PubMed]
    [Google Scholar]
  15. Harris S. R., Cartwright E. J., Török M. E., Holden M. T., Brown N. M., Ogilvy-Stuart A. L., Ellington M. J., Quail M. A., Bentley S. D. et al. 2013; Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis 13:130–136 [View Article][PubMed]
    [Google Scholar]
  16. Hawkey J., Edwards D. J., Dimovski K., Hiley L., Billman-Jacobe H., Hogg G., Holt K. E. 2013; Evidence of microevolution of Salmonella Typhimurium during a series of egg-associated outbreaks linked to a single chicken farm. BMC Genomics 14:800 [View Article][PubMed]
    [Google Scholar]
  17. He M., Miyajima F., Roberts P., Ellison L., Pickard D. J., Martin M. J., Connor T. R., Harris S. R., Fairley D. et al. 2013; Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45:109–113 [View Article][PubMed]
    [Google Scholar]
  18. Holt K. E., Baker S., Weill F. X., Holmes E. C., Kitchen A., Yu J., Sangal V., Brown D. J., Coia J. E. et al. 2012; Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet 44:1056–1059 [View Article][PubMed]
    [Google Scholar]
  19. Hugas M., Beloeil P. 2014; Controlling Salmonella along the food chain in the European Union - progress over the last ten years. Eurosurveillance 19:20804 [View Article]
    [Google Scholar]
  20. Inns T., Lane C., Peters T., Dallman T., Chatt C., McFarland N., Crook P., Bishop T., Edge J. et al. 2015; A multi-country Salmonella Enteritidis phage type 14b outbreak associated with eggs from a German producer: 'near real-time' application of whole genome sequencing and food chain investigations, United Kingdom, May to September 2014. Euro Surveill 20:21098 [View Article][PubMed]
    [Google Scholar]
  21. Jenkins C., Dallman T. J., Launders N., Willis C., Byrne L., Jorgensen F., Eppinger M., Adak G. K., Aird H. et al. 2015; Public health investigation of two outbreaks of Shiga toxin-producing Escherichia coli O157 associated with consumption of watercress. Appl 81:3946–3952 [View Article]
    [Google Scholar]
  22. Jombart T., Balloux F., Dray S. 2010; adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26:1907–1909 [View Article][PubMed]
    [Google Scholar]
  23. Lane C. R., LeBaigue S., Esan O. B., Awofisyo A. A., Adams N. L., Fisher I. S., Grant K. A., Peters T. M., Larkin L. et al. 2014; Salmonella enterica serovar Enteritidis, England and Wales, 1945-2011. Emerg Infect Dis 20:1097–1104 [View Article][PubMed]
    [Google Scholar]
  24. Legendre P., Legendre L. F. 2012; Numerical ecology. Elsevier
  25. Li H., Durbin R. 2010; Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595 [View Article]
    [Google Scholar]
  26. Mantel N. 1967; The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220[PubMed]
    [Google Scholar]
  27. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S. et al. 2010; The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303 [View Article][PubMed]
    [Google Scholar]
  28. Poirier E., Watier L., Espie E., Weill F. X., De Valk H., Desenclos J. C. 2008; Evaluation of the impact on human salmonellosis of control measures targeted to Salmonella Enteritidis and Typhimurium in poultry breeding using time-series analysis and intervention models in France. Epidemiol Infect 136:1217–1224 [View Article][PubMed]
    [Google Scholar]
  29. Quick J., Ashton P., Calus S., Chatt C., Gossain S., Hawker J., Nair S., Neal K., Nye K. et al. 2015; Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol 16:114 [View Article][PubMed]
    [Google Scholar]
  30. Stamatakis A. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  31. Taylor A. J., Lappi V., Wolfgang W. J., Lapierre P., Palumbo M. J., Medus C., Boxrud D. 2015; Characterization of foodborne outbreaks of Salmonella enterica serovar Enteritidis with whole-genome sequencing single nucleotide polymorphism-based analysis for surveillance and outbreak detection. J Clin Microbiol 53:3334–3340 [View Article][PubMed]
    [Google Scholar]
  32. Team R. C. 2014; R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria 2012: ISBN 3-900051-07-0
    [Google Scholar]
  33. Wuyts V., Denayer S., Roosens N. H., Mattheus W., Bertrand S., Marchal K., Dierick K., De Keersmaecker S. C. 2015; Whole genome sequence analysis of Salmonella Enteritidis PT4 outbreaks from a national reference laboratory's viewpoint. PLoS Curr 7: [View Article][PubMed]
    [Google Scholar]
  34. Dallman, T. J., Ashton, P. A., Jenkins, C. & Grant, K. NCBI Short Read Archive: PRJNA248792 2015
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000070
Loading
/content/journal/mgen/10.1099/mgen.0.000070
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error