1887

Abstract

DNA uptake sequences are widespread throughout the Neisseria gonorrhoeae genome. These short, conserved sequences facilitate the exchange of endogenous DNA between members of the genus Neisseria. Often the DNA uptake sequences are present as inverted repeats that are able to form hairpin structures. It has been suggested previously that DNA uptake sequence inverted repeats present 3′ of genes play a role in rho-independent termination and attenuation. However, there is conflicting experimental evidence to support this role. The aim of this study was to determine the role of DNA uptake sequences in transcriptional termination. Both bioinformatics predictions, conducted using TransTermHP, and experimental evidence, from RNA-seq data, were used to determine which inverted repeat DNA uptake sequences are transcriptional terminators and in which direction. Here we show that DNA uptake sequences in the inverted repeat configuration occur in N. gonorrhoeae both where the DNA uptake sequence precedes the inverted version of the sequence and also, albeit less frequently, in reverse order. Due to their symmetrical configuration, inverted repeat DNA uptake sequences can potentially act as bi-directional terminators, therefore affecting transcription on both DNA strands. This work also provides evidence that gaps in DNA uptake sequence density in the gonococcal genome coincide with areas of DNA that are foreign in origin, such as prophage. This study differentiates for the first time, to our knowledge, between DNA uptake sequences that form intrinsic transcriptional terminators and those that do not, providing characteristic features within the flanking inverted repeat that can be identified.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000069
2016-08-25
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/8/mgen000069.html?itemId=/content/journal/mgen/10.1099/mgen.0.000069&mimeType=html&fmt=ahah

References

  1. Ambur O. H., Frye S. A., Tønjum T.. 2007; New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J Bacteriol189:2077–2085 [CrossRef][PubMed]
    [Google Scholar]
  2. Bentley S. D., Vernikos G. S., Snyder L. A., Churcher C., Arrowsmith C., Chillingworth T., Cronin A., Davis P. H., Holroyd N. E. et al. 2007; Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet. 3e23
  3. Berry J. L., Cehovin A., McDowell M. A., Lea S. M., Pelicic V.. 2013; Functional analysis of the interdependence between DNA uptake sequence and its cognate ComP receptor during natural transformation in Neisseria species. PLoS Genet9:e1004014 [CrossRef][PubMed]
    [Google Scholar]
  4. Carver T., Thomson N., Bleasby A., Berriman M., Parkhill J.. 2009; DNAPlotter: circular and linear interactive genome visualization. Bioinformatics25:119–120 [CrossRef][PubMed]
    [Google Scholar]
  5. Cehovin A., Simpson P. J., McDowell M. A., Brown D. R., Noschese R., Pallett M., Brady J., Baldwin G. S., Lea S. M. et al. 2013; Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci U S A110:3065–3070 [CrossRef][PubMed]
    [Google Scholar]
  6. Chaudhuri R. R., Loman N. J., Snyder L. A., Bailey C. M., Stekel D. J., Pallen M. J.. 2008; xBASE2: a comprehensive resource for comparative bacterial genomics. Nucleic Acids Res36:D543–D546 [CrossRef][PubMed]
    [Google Scholar]
  7. Chung G. T., Yoo J. S., Oh H. B., Lee Y. S., Cha S. H., Kim S. J., Yoo C. K.. 2008; Complete genome sequence of Neisseria gonorrhoeae NCCP11945. J Bacteriol190:6035–6036 [CrossRef][PubMed]
    [Google Scholar]
  8. Darling A. E., Mau B., Perna N. T.. 2010; progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One5:e11147 [CrossRef][PubMed]
    [Google Scholar]
  9. Davidsen T., Rødland E. A., Lagesen K., Seeberg E., Rognes T., Tønjum T.. 2004; Biased distribution of DNA uptake sequences towards genome maintenance genes. Nucleic Acids Res32:1050–1058 [CrossRef][PubMed]
    [Google Scholar]
  10. Dillard J. P., Seifert H. S.. 2001; A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol41:263–277 [CrossRef][PubMed]
    [Google Scholar]
  11. Ermolaeva M. D., Khalak H. G., White O., Smith H. O., Salzberg S. L.. 2000; Prediction of transcription terminators in bacterial genomes. J Mol Biol301:27–33 [CrossRef][PubMed]
    [Google Scholar]
  12. Frye S. A., Nilsen M., Tønjum T., Ambur O. H.. 2013; Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet9:e1003458 [CrossRef][PubMed]
    [Google Scholar]
  13. Gilbert M., Watson D. C., Cunningham A. M., Jennings M. P., Young N. M., Wakarchuk W. W.. 1996; Cloning of the lipooligosaccharide α-2,3-sialyltransferase from the bacterial pathogens Neisseria meningitidis and Neisseria gonorrhoeae. J Biol Chem271:28271–28276 [CrossRef][PubMed]
    [Google Scholar]
  14. Goodman S. D., Scocca J. J.. 1988; Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A85:6982–6986 [CrossRef][PubMed]
    [Google Scholar]
  15. Hagman K. E., Pan W., Spratt B. G., Balthazar J. T., Judd R. C., Shafer W. M.. 1995; Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology141:611–622 [CrossRef][PubMed]
    [Google Scholar]
  16. Hamilton H. L., Domínguez N. M., Schwartz K. J., Hackett K. T., Dillard J. P.. 2005; Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol Microbiol55:1704–1721 [CrossRef][PubMed]
    [Google Scholar]
  17. Isabella V. M., Clark V. L.. 2011; Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics12: [CrossRef][PubMed]
    [Google Scholar]
  18. Kawai M., Uchiyama I., Kobayashi I.. 2005; Genome comparison in silico in Neisseria suggests integration of filamentous bacteriophages by their own transposase. DNA Res12:389–401 [CrossRef][PubMed]
    [Google Scholar]
  19. Kellogg D. S., Peacock W. L., Deacon W. E., Brown L., Pirkle D. I.. 1963; Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. J Bacteriol85:1274–1279[PubMed]
    [Google Scholar]
  20. Kingsford C. L., Ayanbule K., Salzberg S. L.. 2007; Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol8: [CrossRef][PubMed]
    [Google Scholar]
  21. Kriz P., Giorgini D., Musilek M., Larribe M., Taha M. K.. 1999; Microevolution through DNA exchange among strains of Neisseria meningitidis isolated during an outbreak in the Czech Republic. Res Microbiol150:273–280 [CrossRef][PubMed]
    [Google Scholar]
  22. Lesnik E. A., Sampath R., Levene H. B., Henderson T. J., McNeil J. A., Ecker D. J.. 2001; Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res29:3583–3594 [CrossRef][PubMed]
    [Google Scholar]
  23. Lucas C. E., Balthazar J. T., Hagman K. E., Shafer W. M.. 1997; The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J Bacteriol179:4123–4128[PubMed]
    [Google Scholar]
  24. Marri P. R., Paniscus M., Weyand N. J., Rendón M. A., Calton C. M., Hernández D. R., Higashi D. L., Sodergren E., Weinstock G. M. et al. 2010; Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One5: [CrossRef][PubMed]
    [Google Scholar]
  25. McClure R., Balasubramanian D., Sun Y., Bobrovskyy M., Sumby P., Genco C. A., Vanderpool C. K., Tjaden B.. 2013; Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res41: [CrossRef][PubMed]
    [Google Scholar]
  26. Parkhill J., Achtman M., James K. D., Bentley S. D., Churcher C., Klee S. R., Morelli G., Basham D., Brown D. et al. 2000; Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature. 404502–506
  27. Piekarowicz A., Majchrzak M., Kłyz A., Adamczyk-Popławska M., Klyz A.. 2006; Analysis of the filamentous bacteriophage genomes integrated into Neisseria gonorrhoeae FA1090 chromosome. Pol J Microbiol55:251–260[PubMed]
    [Google Scholar]
  28. Piekarowicz A., Kłyz A., Majchrzak M., Adamczyk-Popławska M., Maugel T. K., Stein D. C.. 2007; Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiol7: [CrossRef][PubMed]
    [Google Scholar]
  29. Rice P., Longden I., Bleasby A.. 2000; EMBOSS: the european molecular biology open software suite. Trends Genet16:276–277 [CrossRef][PubMed]
    [Google Scholar]
  30. Rouquette C., Harmon J. B., Shafer W. M.. 1999; Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein. Mol Microbiol33:651–658 [CrossRef][PubMed]
    [Google Scholar]
  31. Rouquette-Loughlin C. E., Balthazar J. T., Hill S. A., Shafer W. M.. 2004; Modulation of the mtrCDE-encoded efflux pump gene complex of Neisseria meningitidis due to a Correia element insertion sequence. Mol Microbiol54:731–741 [CrossRef][PubMed]
    [Google Scholar]
  32. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B.. 2000; Artemis: sequence visualization and annotation. Bioinformatics16:944–945 [CrossRef][PubMed]
    [Google Scholar]
  33. Silhan J., Nagorska K., Zhao Q., Jensen K., Freemont P. S., Tang C. M., Baldwin G. S.. 2012; Specialization of an Exonuclease III family enzyme in the repair of 3' DNA lesions during base excision repair in the human pathogen Neisseria meningitidis. Nucleic Acids Res40:2065–2075 [CrossRef][PubMed]
    [Google Scholar]
  34. Smith H. O., Gwinn M. L., Salzberg S. L.. 1999; DNA uptake signal sequences in naturally transformable bacteria. Res Microbiol150:603–616 [CrossRef][PubMed]
    [Google Scholar]
  35. Snyder L. A., Shafer W. M., Saunders N. J.. 2003; Divergence and transcriptional analysis of the division cell wall (dcw) gene cluster in Neisseria spp. Mol Microbiol47:431–441 [CrossRef][PubMed]
    [Google Scholar]
  36. Snyder L. A., Davies J. K., Saunders N. J.. 2004; Microarray genomotyping of key experimental strains of Neisseria gonorrhoeae reveals gene complement diversity and five new neisserial genes associated with Minimal Mobile Elements. BMC Genomics5: [CrossRef][PubMed]
    [Google Scholar]
  37. Snyder L. A., Jarvis S. A., Saunders N. J.. 2005; Complete and variant forms of the 'gonococcal genetic island' in Neisseria meningitidis. Microbiology151:4005–4013 [CrossRef][PubMed]
    [Google Scholar]
  38. Snyder L. A., McGowan S., Rogers M., Duro E., O'Farrell E., Saunders N. J.. 2007; The repertoire of minimal mobile elements in the Neisseria species and evidence that these are involved in horizontal gene transfer in other bacteria. Mol Biol Evol24:2802–2815 [CrossRef][PubMed]
    [Google Scholar]
  39. Snyder L. A., Cole J. A., Pallen M. J.. 2009; Comparative analysis of two Neisseria gonorrhoeae genome sequences reveals evidence of mobilization of Correia Repeat Enclosed Elements and their role in regulation. BMC Genomics10:10–70 [CrossRef][PubMed]
    [Google Scholar]
  40. Sparling P. F.. 1966; Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol92:1364–1371[PubMed]
    [Google Scholar]
  41. Spencer-Smith R., Varkey E. M., Fielder M. D., Snyder L. A.. 2012; Sequence features contributing to chromosomal rearrangements in Neisseria gonorrhoeae. PLoS One7:e46023 [CrossRef][PubMed]
    [Google Scholar]
  42. Spratt B. G., Bowler L. D., Zhang Q. Y., Zhou J., Smith J. M.. 1992; Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol34:115–125 [CrossRef][PubMed]
    [Google Scholar]
  43. Unniraman S., Prakash R., Nagaraja V.. 2002; Conserved economics of transcription termination in eubacteria. Nucleic Acids Res30:675–684 [CrossRef][PubMed]
    [Google Scholar]
  44. Vélez Acevedo R. N., Ronpirin C., Kandler J. L., Shafer W. M., Cornelissen C. N.. 2014; Identification of regulatory elements that control expression of the tbpBA operon in Neisseria gonorrhoeae. J Bacteriol196:2762–2774 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000069
Loading
/content/journal/mgen/10.1099/mgen.0.000069
Loading

Data & Media loading...

Supplements

Supplementary File 1

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error