Massive dispersal of Coxiella burnetii among cattle across the United States Open Access

Abstract

Q-fever is an underreported disease caused by the bacterium Coxiella burnetii, which is highly infectious and has the ability to disperse great distances. It is a completely clonal pathogen with low genetic diversity and requires whole-genome analysis to identify discriminating features among closely related isolates. C. burnetii, and in particular one genotype (ST20), is commonly found in cow’s milk across the entire dairy industry of the USA. This single genotype dominance is suggestive of host-specific adaptation, rapid dispersal and persistence within cattle. We used a comparative genomic approach to identify SNPs for high-resolution and high-throughput genotyping assays to better describe the dispersal of ST20 across the USA. We genotyped 507 ST20 cow milk samples and discovered three subgenotypes, all of which were present across the entire country and over the complete time period studied. Only one of these sub-genotypes was observed in a single dairy herd. The temporal and geographic distribution of these sub-genotypes is consistent with a model of large-scale, rapid, frequent and continuous dissemination on a continental scale. The distribution of subgenotypes is not consistent with wind-based dispersal alone, and it is likely that animal husbandry and transportation practices, including pooling of milk from multiple herds, have also shaped the patterns. On the scale of an entire country, there appear to be few barriers to rapid, frequent and large-scale dissemination of the ST20 subgenotypes.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000068
2016-08-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/8/mgen000068.html?itemId=/content/journal/mgen/10.1099/mgen.0.000068&mimeType=html&fmt=ahah

References

  1. Agerholm J. S. 2013; Coxiella burnetii associated reproductive disorders in domestic animals – a critical review. Acta Vet Scand 55:13 [View Article][PubMed]
    [Google Scholar]
  2. Agresti A., Kateri M. 2011 Categorical Data Analysis Berlin, Heidelberg: Springer;
    [Google Scholar]
  3. Archie J. W. 1996; Measures of homoplasy. In Homoplasy: The Recurrence of Similarity in Evolution , pp. 153–188 Edited by Sanderson M. J., Hufford L. San Diego: Academic Press;
    [Google Scholar]
  4. Arricau-Bouvery N., Hauck Y., Bejaoui A., Frangoulidis D., Bodier C. C., Souriau A., Meyer H., Neubauer H., Rodolakis A. et al. 2006; Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing. BMC Microbiol 6:38 [View Article][PubMed]
    [Google Scholar]
  5. Astobiza I., Tilburg J. J., Piñero A., Hurtado A., García-Pérez A. L., Nabuurs-Franssen M. H., Klaassen C. H. 2012; Genotyping of Coxiella burnetii from domestic ruminants in northern Spain. BMC Vet Res 8:241 [View Article][PubMed]
    [Google Scholar]
  6. Bauer A. E., Olivas S., Cooper M., Hornstra H., Keim P., Pearson T., Johnson A. J. 2015; Estimated herd prevalence and sequence types of Coxiella burnetii in bulk tank milk samples from commercial dairies in Indiana. BMC Vet Res 11:186 [View Article][PubMed]
    [Google Scholar]
  7. Benenson A. S., Tigertt W. D. 1956; Studies on Q fever in man. Trans Assoc Am Physicians 69:98–104[PubMed]
    [Google Scholar]
  8. D'Amato F., Eldin C., Raoult D. 2016; The contribution of genomics to the study of Q fever. Future Microbiol 11:253–272 [View Article][PubMed]
    [Google Scholar]
  9. Eppinger M., Pearson T., Koenig S. S., Pearson O., Hicks N., Agrawal S., Sanjar F., Galens K., Daugherty S. et al. 2014; Genomic epidemiology of the Haitian cholera outbreak: a single introduction followed by rapid, extensive, and continued spread characterized the onset of the epidemic. MBio 5:e01721 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  11. Glazunova O., Roux V., Freylikman O., Sekeyova Z., Fournous G., Tyczka J., Tokarevich N., Kovacava E., Marrie T. J. et al. 2005; Coxiella burnetii genotyping. Emerg Infect Dis 11:1211–1217 [View Article][PubMed]
    [Google Scholar]
  12. Hawker J. I., Ayres J. G., Blair I., Evans M. R., Smith D. L., Smith E. G., Burge P. S., Carpenter M. J., Caul E. O. et al. 1998; A large outbreak of Q fever in the West Midlands: windborne spread into a metropolitan area?. Commun Dis Public Health 1:180–187[PubMed]
    [Google Scholar]
  13. Hornstra H. M., Priestley R. A., Georgia S. M., Kachur S., Birdsell D. N., Hilsabeck R., Gates L. T., Samuel J. E., Heinzen R. A. et al. 2011; Rapid typing of Coxiella burnetii. PLoS One 6:e26201 [View Article][PubMed]
    [Google Scholar]
  14. Kersh G. J., Fitzpatrick K. A., Self J. S., Priestley R. A., Kelly A. J., Lash R. R., Marsden-Haug N., Nett R. J., Bjork A. et al. 2013; Presence and persistence of Coxiella burnetii in the environments of goat farms associated with a Q fever outbreak. Appl Environ Microbiol 79:1697–1703 [View Article][PubMed]
    [Google Scholar]
  15. Maurin M., Raoult D. 1999; Q fever. Clin Microbiol Rev 12:518–553[PubMed]
    [Google Scholar]
  16. Nusinovici S., Frössling J., Widgren S., Beaudeau F., Lindberg A. 2015; Q fever infection in dairy cattle herds: increased risk with high wind speed and low precipitation. Epidemiol Infect 143:3316–3326 [View Article][PubMed]
    [Google Scholar]
  17. Omsland A., Beare P. A., Hill J., Cockrell D. C., Howe D., Hansen B., Samuel J. E., Heinzen R. A. 2011; Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl Environ Microbiol 77:3720–3725 [View Article][PubMed]
    [Google Scholar]
  18. Pearson T., Busch J. D., Ravel J., Read T. D., Rhoton S. D., U'Ren J. M., Simonson T. S., Kachur S. M., Leadem R. R. et al. 2004; Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc Natl Acad Sci U S A 101:13536–13541 [View Article][PubMed]
    [Google Scholar]
  19. Pearson T., Okinaka R. T., Foster J. T., Keim P. 2009; Phylogenetic understanding of clonal populations in an era of whole genome sequencing. Infect Genet Evol 9:1010–1019 [View Article][PubMed]
    [Google Scholar]
  20. Pearson T., Hornstra H. M., Sahl J. W., Schaack S., Schupp J. M., Beckstrom-Sternberg S. M., O'Neill M. W., Priestley R. A., Champion M. D. et al. 2013; When outgroups fail; phylogenomics of rooting the emerging pathogen, Coxiella burnetii. Syst Biol 62:752–762 [View Article][PubMed]
    [Google Scholar]
  21. Pearson T., Hornstra H. M., Hilsabeck R., Gates L. T., Olivas S. M., Birdsell D. M., Hall C. M., German S., Cook J. M. et al. 2014; High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk. BMC Microbiol 14:41 [View Article][PubMed]
    [Google Scholar]
  22. Sahl J. W., Beckstrom-Sternberg S. M., Babic-Sternberg J., Gillece J. D., Hepp C. M., Auerbach R. K., Tembe W., Wagner D. M., Keim P. S., Pearson T. 2015; The In Silico Genotyper (ISG): an open-source pipeline to rapidly identify and annotate nucleotide variants for comparative genomics applications. bioRxiv
    [Google Scholar]
  23. Scholz H. C., Pearson T., Hornstra H., Projahn M., Terzioglu R., Wernery R., Georgi E., Riehm J. M., Wagner D. M. et al. 2014; Genotyping of Burkholderia mallei from an outbreak of glanders in Bahrain suggests multiple introduction events. PLoS Negl Trop Dis 8:e3195 [View Article][PubMed]
    [Google Scholar]
  24. Scott G. H., Williams J. C. 1990; Susceptibility of Coxiella burnetii to chemical disinfectants. Ann N Y Acad Sci 590:291–296 [View Article][PubMed]
    [Google Scholar]
  25. Sidi-Boumedine K., Duquesne V., Prigent M., Yang E., Joulié A., Thiéry R., Rousset E. 2015; Impact of IS1111 insertion on the MLVA genotyping of Coxiella burnetii. Microbes Infect 17:789–794 [View Article][PubMed]
    [Google Scholar]
  26. Svraka S., Toman R., Skultety L., Slaba K., Homan W. L. 2006; Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol Lett 254:268–274 [View Article][PubMed]
    [Google Scholar]
  27. Swofford, D. L. PAUP*: phylogenetic analysis using parsimony (and other methods). version 4. Sunderland, MA: Sinauer Associates. 2002
  28. Tissot-Dupont H., Amadei M.-A., Nezri M., Raoult D. 2004; Wind in November, Q fever in December. Emerg Infect Dis 10:1264–1269 [View Article][PubMed]
    [Google Scholar]
  29. Wood S. 2006 Generalized Additive Models: An Introduction with R Boca Raton, FL: Chapman and Hall/CRC press;
    [Google Scholar]
  30. Olivas S, Hornstra H, Priestley RA, Kaufman E, Hepp C, Sonderegger DL, Handady K, Massung RF, Keim P, Kersh GJ, Pearson T. http://www.ncbi.nlm.nih.gov/Traces/sra/?run=SRR3347458 2016
  31. Olivas S, Hornstra H, Priestley RA, Kaufman E, Hepp C, Sonderegger DL, Handady K, Massung RF, Keim P, Kersh GJ, Pearson T. http://www.ncbi.nlm.nih.gov/Traces/sra/?run=SRR3347491 2016
  32. Olivas S, Hornstra H, Priestley RA, Kaufman E, Hepp C, Sonderegger DL, Handady K, Massung RF, Keim P, Kersh GJ, Pearson T. http://www.ncbi.nlm.nih.gov/Traces/sra/?run=SRR3347474 2016
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000068
Loading
/content/journal/mgen/10.1099/mgen.0.000068
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed