1887

Abstract

Melioidosis, caused by the highly recombinogenic bacterium Burkholderia pseudomallei, is a disease with high mortality. Tracing the origin of melioidosis outbreaks and understanding how the bacterium spreads and persists in the environment are essential to protecting public and veterinary health and reducing mortality associated with outbreaks. We used whole-genome sequencing to compare isolates from a historical quarter-century outbreak that occurred between 1966 and 1991 in the Avon Valley, Western Australia, a region far outside the known range of B. pseudomallei endemicity. All Avon Valley outbreak isolates shared the same multilocus sequence type (ST-284), which has not been identified outside this region. We found substantial genetic diversity among isolates based on a comparison of genome-wide variants, with no clear correlation between genotypes and temporal, geographical or source data. We observed little evidence of recombination in the outbreak strains, indicating that genetic diversity among these isolates has primarily accrued by mutation. Phylogenomic analysis demonstrated that the isolates confidently grouped within the Australian B. pseudomallei clade, thereby ruling out introduction from a melioidosis-endemic region outside Australia. Collectively, our results point to B. pseudomallei ST-284 being present in the Avon Valley for longer than previously recognized, with its persistence and genomic diversity suggesting long-term, low-prevalence endemicity in this temperate region. Our findings provide a concerning demonstration of the potential for environmental persistence of B. pseudomallei far outside the conventional endemic regions. An expected increase in extreme weather events may reactivate latent B. pseudomallei populations in this region.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000067
2016-07-11
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/7/mgen000067.html?itemId=/content/journal/mgen/10.1099/mgen.0.000067&mimeType=html&fmt=ahah

References

  1. Assefa S., Keane T. M., Otto T. D., Newbold C., Berriman M.. 2009; ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics25:1968–1969 [CrossRef][PubMed]
    [Google Scholar]
  2. Boetzer M., Pirovano W.. 2012; Toward almost closed genomes with GapFiller. Genome Biol13:R56 [CrossRef][PubMed]
    [Google Scholar]
  3. Boetzer M., Henkel C. V., Jansen H. J., Butler D., Pirovano W.. 2011; Scaffolding pre-assembled contigs using SSPACE. Bioinformatics27:578–579 [CrossRef][PubMed]
    [Google Scholar]
  4. Cheng A. C., Currie B. J.. 2005; Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev18:383–416 [CrossRef][PubMed]
    [Google Scholar]
  5. Choy J. L., Mayo M., Janmaat A., Currie B. J.. 2000; Animal melioidosis in Australia. Acta Trop74:153–158 [CrossRef][PubMed]
    [Google Scholar]
  6. Cottew G. S., Sutherland A. K., Meehan J. F.. 1952; Melioidosis in sheep in Queensland: description of an outbreak. Aust Vet J28:113–123 [CrossRef]
    [Google Scholar]
  7. Croucher N. J., Page A. J., Connor T. R., Delaney A. J., Keane J. A., Bentley S. D., Parkhill J., Harris S. R.. 2015; Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res43:e15 [CrossRef][PubMed]
    [Google Scholar]
  8. Currie B. J.. 2015; Melioidosis: evolving concepts in epidemiology, pathogenesis, and treatment. Semin Respir Crit Care Med36:111–125 [CrossRef][PubMed]
    [Google Scholar]
  9. Currie B. J., Gal D., Mayo M., Ward L., Godoy D., Spratt B. G., LiPuma J. J.. 2007; Using BOX-PCR to exclude a clonal outbreak of melioidosis. BMC Infect Dis7: [CrossRef][PubMed]
    [Google Scholar]
  10. Currie B., Smith-Vaughan H., Golledge C., Buller N., Sriprakash K. S., Kemp D. J.. 1994; Pseudomonas pseudomallei isolates collected over 25 years from a non-tropical endemic focus show clonality on the basis of ribotyping. Epidemiol Infect113:307–312 [CrossRef][PubMed]
    [Google Scholar]
  11. Dance D. A.. 2015; Editorial commentary: melioidosis in Puerto Rico: the iceberg slowly emerges. Clin Infect Dis 60:251–253 [CrossRef][PubMed]
    [Google Scholar]
  12. Darling A. C., Mau B., Blattner F. R., Perna N. T.. 2004; Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res14:1394–1403 [CrossRef][PubMed]
    [Google Scholar]
  13. De Smet B., Sarovich D. S., Price E. P., Mayo M., Theobald V., Kham C., Heng S., Thong P., Holden M. T. et al. 2015; Whole-genome sequencing confirms that Burkholderia pseudomallei multilocus sequence types common to both Cambodia and Australia are due to homoplasy. J Clin Microbiol53:323–326 [CrossRef][PubMed]
    [Google Scholar]
  14. Doker T. J., Sharp T. M., Rivera-Garcia B., Perez-Padilla J., Benoit T. J., Ellis E. M., Elrod M. G., Gee J. E., Shieh W. J. et al. 2015; Contact investigation of melioidosis cases reveals regional endemicity in Puerto Rico. Clin Infect Dis 60:243–250 [CrossRef][PubMed]
    [Google Scholar]
  15. Gardy J. L., Johnston J. C., Ho Sui S. J., Cook V. J., Shah L., Brodkin E., Rempel S., Moore R., Zhao Y. et al. 2011; Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med364:730–739 [CrossRef][PubMed]
    [Google Scholar]
  16. Godoy D., Randle G., Simpson A. J., Aanensen D. M., Pitt T. L., Kinoshita R., Spratt B. G.. 2003; Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol41:2068–2079 [CrossRef][PubMed]
    [Google Scholar]
  17. Golledge C. L., Chin W. S., Tribe A. E., Condon R. J., Ashdown L. R.. 1992; A case of human melioidosis originating in south-west Western Australia. Med J Aust157:332–334[PubMed]
    [Google Scholar]
  18. Haase A., Melder A., Smith-Vaughan H., Kemp D., Currie B.. 1995; Rapd analysis of isolates of Burkholderia pseudomallei from patients with recurrent melioidosis. Epidemiol Infect115:115–121 [CrossRef][PubMed]
    [Google Scholar]
  19. Hendriksen R. S., Price L. B., Schupp J. M., Gillece J. D., Kaas R. S., Engelthaler D. M., Bortolaia V., Pearson T., Waters A. E. et al. 2011; Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. MBio2:e0015700111 [CrossRef][PubMed]
    [Google Scholar]
  20. Holden M. T., Titball R. W., Peacock S. J., Cerdeño-Tárraga A. M., Atkins T., Crossman L. C., Pitt T., Churcher C., Mungall K. et al. 2004; Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A101:14240–14245 [CrossRef][PubMed]
    [Google Scholar]
  21. Huang W., Li L., Myers J. R., Marth G. T.. 2012; Art: a next-generation sequencing read simulator. Bioinformatics28:593–594 [CrossRef][PubMed]
    [Google Scholar]
  22. Inglis T. J., Sagripanti J. L.. 2006; Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Appl Environ Microbiol72:6865–6875 [CrossRef][PubMed]
    [Google Scholar]
  23. Johansson A., Lärkeryd A., Widerström M., Mörtberg S., Myrtännäs K., Ohrman C., Birdsell D., Keim P., Wagner D. M. et al. 2014; An outbreak of respiratory tularemia caused by diverse clones of Francisella tularensis. Clin Infect Dis 59:1546–1553 [CrossRef][PubMed]
    [Google Scholar]
  24. Ketterer P. J., Bamford V. W.. 1967; A case of melioidosis in lambs in south Western Australia. Aust Vet J43:79–80 [CrossRef]
    [Google Scholar]
  25. Köser C. U., Ellington M. J., Cartwright E. J. P., Gillespie S. H., Brown N. M., Farrington M., Holden M. T. G., Dougan G., Bentley S. D., other authors. 2012a; Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog8:e1002824 [CrossRef]
    [Google Scholar]
  26. Köser C. U., Holden M. T. G., Ellington M. J., Cartwright E. J. P., Brown N. M., Ogilvy-Stuart A. L., Hsu L. Y., Chewapreecha C., Croucher N. J. et al. 2012b; Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med366:2267–2275 [CrossRef][PubMed]
    [Google Scholar]
  27. Limmathurotsakul D., Golding N., Dance D. A., Messina J. P., Pigott D. M., Moyes C. L., Rolim D. B., Bertherat E., Day N. P. et al. 2016; Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbio1: [CrossRef][PubMed]
    [Google Scholar]
  28. Limmathurotsakul D., Holden M. T., Coupland P., Price E. P., Chantratita N., Wuthiekanun V., Amornchai P., Parkhill J., Peacock S. J.. 2014; Microevolution of Burkholderia pseudomallei during an acute infection. J Clin Microbiol52:3418–3421 [CrossRef][PubMed]
    [Google Scholar]
  29. Lloyd J. M., Suijdendorp P., Soutar W. R.. 1988; Melioidosis in a dog. Aust Vet J65:191–192 [CrossRef][PubMed]
    [Google Scholar]
  30. McRobb E., Sarovich D. S., Price E. P., Kaestli M., Mayo M., Keim P., Currie B. J.. 2015; Tracing melioidosis back to the source: using whole-genome sequencing to investigate an outbreak originating from a contaminated domestic water supply. J Clin Microbiol53:1144–1148 [CrossRef][PubMed]
    [Google Scholar]
  31. Milne I., Stephen G., Bayer M., Cock P. J., Pritchard L., Cardle L., Shaw P. D., Marshall D.. 2013; Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform14:193–202 [CrossRef][PubMed]
    [Google Scholar]
  32. Mollaret H. H.. 1988; L'affaire Du Jardin des plantesou comment la mélioïdose fit son apparition en France. Med Mal Infect18:643–654 [CrossRef]
    [Google Scholar]
  33. Moore R. A., Tuanyok A., Woods D. E.. 2008; Survival of Burkholderia pseudomallei in water. BMC Res Notes1: [CrossRef][PubMed]
    [Google Scholar]
  34. Munckhof W. J., Mayo M. J., Scott I., Currie B. J.. 2001; Fatal human melioidosis acquired in a subtropical Australian city. Am J Trop Med Hyg65:325–328[PubMed]
    [Google Scholar]
  35. O'Brien H.. 1834; Disordar [sic] among sheep. In The Perth Gazette and Western Australian Journal pp.323–324 Perth, Western Australia: Charles Macfaull;
    [Google Scholar]
  36. Otto T. D., Sanders M., Berriman M., Newbold C.. 2010; Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology. Bioinformatics26:1704–1707 [CrossRef][PubMed]
    [Google Scholar]
  37. Pearson T., Giffard P., Beckstrom-Sternberg S., Auerbach R., Hornstra H., Tuanyok A., Price E. P., Glass M. B., Leadem B. et al. 2009; Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biol7: [CrossRef][PubMed]
    [Google Scholar]
  38. Pearson T., U'Ren J. M., Schupp J. M., Allan G. J., Foster P. G., Mayo M. J., Gal D., Choy J. L., Daugherty R. L. et al. 2007; VNTR analysis of selected outbreaks of Burkholderia pseudomallei in Australia. Infect Genet Evol7:416–423 [CrossRef][PubMed]
    [Google Scholar]
  39. Price E. P., Hornstra H. M., Limmathurotsakul D., Max T. L., Sarovich D. S., Vogler A. J., Dale J. L., Ginther J. L., Leadem B. et al. 2010; Within-host evolution of Burkholderia pseudomallei in four cases of acute melioidosis. PLoS Pathog6:e1000725 [CrossRef][PubMed]
    [Google Scholar]
  40. Price E. P., Sarovich D. S., Mayo M., Tuanyok A., Drees K. P., Kaestli M., Beckstrom-Sternberg S. M., Babic-Sternberg J. S., Kidd T. J. et al. 2013; Within-host evolution of Burkholderia pseudomallei over a twelve-year chronic carriage infection. MBio4:e0038800313 [CrossRef][PubMed]
    [Google Scholar]
  41. Price E. P., Sarovich D. S., Smith E. J., MacHunter B., Harrington G., Theobald V., Hall C. M., Hornstra H. M., McRobb E. et al. 2016; Unprecedented melioidosis cases in Northern Australia caused by an Asian Burkholderia pseudomallei strain identified by using large-scale comparative genomics. Appl Environ Microbiol82:954–963 [CrossRef]
    [Google Scholar]
  42. Price E. P., Sarovich D. S., Viberg L., Mayo M., Kaestli M., Tuanyok A., Foster J. T., Keim P., Pearson T. et al. 2015; Whole-genome sequencing of Burkholderia pseudomallei isolates from an unusual melioidosis case identifies a polyclonal infection with the same multilocus sequence type. J Clin Microbiol53:282–286 [CrossRef][PubMed]
    [Google Scholar]
  43. Sarovich D. S., Price E. P.. 2014; SPANDx: a genomics pipeline for comparative analysis of large haploid whole genome re-sequencing datasets. BMC Res Notes7: [CrossRef][PubMed]
    [Google Scholar]
  44. Sarovich D. S., Garin B., De Smet B., Kaestli M., Mayo M., Vandamme P., Jacobs J., Lompo P., Tahita M. C. et al. 2016; Phylogenomic analysis reveals an Asian origin for African Burkholderia pseudomallei and further supports melioidosis endemicity in Africa. MSphere1:e0008900015 [CrossRef]
    [Google Scholar]
  45. Scott I. A., Bell A. M., Staines D. R.. 1997; Fatal human melioidosis in south-eastern Queensland. Med J Aust166:197–199[PubMed]
    [Google Scholar]
  46. Snitkin E. S., Zelazny A. M., Thomas P. J., Stock F., Henderson D. K., Palmore T. N., Segre J. A., Sequencing N. C.. 2012; Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med4:ra116 [CrossRef]
    [Google Scholar]
  47. Swofford D. L.. 2002; Phylogenetic analysis using parsimony (*and other methods). Version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  48. Tsai I. J., Otto T. D., Berriman M.. 2010; Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biol11:R41 [CrossRef][PubMed]
    [Google Scholar]
  49. Walker T. M., Ip C. L., Harrell R. H., Evans J. T., Kapatai G., Dedicoat M. J., Eyre D. W., Wilson D. J., Hawkey P. M. et al. 2013; Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis13:137–146 [CrossRef][PubMed]
    [Google Scholar]
  50. Wiersinga W. J., Currie B. J., Peacock S. J.. 2012; Melioidosis. N Engl J Med367:1035–1044 [CrossRef][PubMed]
    [Google Scholar]
  51. Wuthiekanun V., Smith M. D., White N. J.. 1995; Survival of Burkholderia pseudomallei 587 in the absence of nutrients. Trans R Soc Trop Med Hyg66:
    [Google Scholar]
  52. Yip T. W., Hewagama S., Mayo M., Price E. P., Sarovich D. S., Bastian I., Baird R. W., Spratt B. G., Currie B. J.. 2015; Endemic melioidosis in residents of desert region after atypically intense rainfall in Central Australia, 2011. Emerg Infect Dis21:1038–1040 [CrossRef][PubMed]
    [Google Scholar]
  53. Zerbino D. R., Birney E.. 2008; Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  54. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P. http://www.ebi.ac.uk/ena/data/view/ERS205900 2016
  55. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P.http://www.ebi.ac.uk/ena/data/view/ERS205902 2016
  56. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P. http://www.ebi.ac.uk/ena/data/view/ERS205903 2016
  57. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P.http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR2134233 2016
  58. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P.http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR2134234 2016
  59. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P.http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR2134235 2016
  60. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P.http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR2134237 2016
  61. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P.http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR2134238 2016
  62. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P.http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR2134239 2016
  63. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P.http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR2134240 2016
  64. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P.http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR2134242 2016
  65. Chapple, S. N. J., Sarovich, N. S., Holden, M. T. G., Peacock, S. J., Buller, N., Golledge, C., Mayo, M., Currie, B. J., Price, E. P.http://www.ncbi.nlm.nih.gov/nuccore/LGKL00000000 2016
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000067
Loading
/content/journal/mgen/10.1099/mgen.0.000067
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error