1887

Abstract

Next-generation sequencing technologies have dramatically increased the rate at which new genomes are sequenced. Accordingly, automated annotation programs have become adept at identifying and annotating protein coding regions, as well as common and conserved RNAs. Additionally, RNAseq techniques have advanced our ability to identify and annotate regulatory RNAs (sRNAs), which remain significantly understudied. Recently, our group catalogued and annotated all previously known and newly identified sRNAs in several Staphylococcus aureus strains. These complete annotation files now serve as tools to compare the sRNA content of S. aureus with other bacterial strains to investigate the conservation of their sRNomes. Accordingly, in this study we performed RNAseq on two staphylococcal species, Staphylococcus epidermidis and Staphylococcus carnosus, identifying 118 and 89 sRNAs in these organisms, respectively. The sRNA contents of all three species were then compared to elucidate their common and species-specific sRNA content, identifying a core set of between 53 and 36 sRNAs encoded in each organism. In addition, we determined that S. aureus has the largest set of unique sRNAs (137) while S. epidermidishas the fewest (25). Finally, we identify a highly conserved sequence and structural motif differentially represented within, yet common to, both S. aureus and S. epidermidis. Collectively, in this study, we uncover the sRNome common to three staphylococcal species, shedding light on sRNAs that are likely to be involved in basic physiological processes common to the genus. More significantly, we have identified species-specific sRNAs that are likely to influence the individual lifestyle and behaviour of these diverse staphylococcal strains.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000065
2016-04-26
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/7/mgen000065.html?itemId=/content/journal/mgen/10.1099/mgen.0.000065&mimeType=html&fmt=ahah

References

  1. Abu-Qatouseh L. F., Chinni S. V., Seggewiss J., Proctor R. A., Brosius J., Rozhdestvensky T. S., Peters G., von Eiff C., Becker K.. 2010; Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J Mol Med (Berl)88:565–575 [CrossRef][PubMed]
    [Google Scholar]
  2. Anderson K. L., Roberts C., Disz T., Vonstein V., Hwang K., Overbeek R., Olson P. D., Projan S. J., Dunman P. M.. 2006; Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol188:6739–6756 [CrossRef][PubMed]
    [Google Scholar]
  3. Anderson K. L., Roux C. M., Olson M. W., Luong T. T., Lee C. Y., Olson R., Dunman P. M.. 2010; Characterizing the effects of Inorganic Acid and Alkaline shock on the Staphylococcus aureus Transcriptome and Messenger RNA turnover. FEMS Immun Med Mic60:208–250
    [Google Scholar]
  4. Archer G. L.. 1998; Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis26:1179–1181[PubMed]
    [Google Scholar]
  5. Beaume M., Hernandez D., Farinelli L., Deluen C., Linder P., Gaspin C., Romby P., Schrenzel J., Francois P.. 2010; Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLoS One5:e10725 [CrossRef][PubMed]
    [Google Scholar]
  6. Beisel C. L., Storz G.. 2010; Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev34:866–882 [CrossRef][PubMed]
    [Google Scholar]
  7. Bohn C., Rigoulay C., Chabelskaya S., Sharma C. M., Marchais A., Skorski P., Borezée-Durant E., Barbet R., Jacquet E., other authors. 2010; Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nuc Acid Res38:6620–6636
    [Google Scholar]
  8. Broach W. H., Egan N., Wing H. J., Payne S. M., Murphy E. R.. 2012; VirF-independent regulation of Shigella virB transcription is mediated by the small RNA RyhB. PLoS One7:e38592 [CrossRef][PubMed]
    [Google Scholar]
  9. Busch A., Richter A. S., Backofen R.. 2008; IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. B Informatics24:2849–2856
    [Google Scholar]
  10. Caron M. P., Lafontaine D. A., Massé E.. 2010; Small RNA-mediated regulation at the level of transcript stability. RNA Biol7:140–144[PubMed]
    [Google Scholar]
  11. Carroll R. K., Weiss A., Shaw L. N.. 2014; RNA-Sequencing of Staphylococcus aureus Messenger RNA [Online]. In The Genetic Manipulation of StaphylococciVol. 1373 pp.131–141 Edited by Bose J. L.. New York, NY: Springer New York; Available from: [Accessed 25 November 2015]
    [Google Scholar]
  12. Carroll R. K., Weiss A., Broach W. H., Wiemels R. E., Mogen A. B., Rice K. C., Shaw L. N.. 2016; Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus. MBio7:e0199015 [CrossRef][PubMed]
    [Google Scholar]
  13. Caswell C. C., Gaines J. M., Ciborowski P., Smith D., Borchers C. H., Roux C. M., Sayood K., Dunman P. M., Roop Ii R. M.. 2012; Identification of two small regulatory RNAs linked to virulence in Brucella abortus 2308. Mol Microbiol85:345–360 [CrossRef][PubMed]
    [Google Scholar]
  14. Dark M. J.. 2013; Whole-Genome sequencing in bacteriology: state of the art. Infect Drug Res6:115–123
    [Google Scholar]
  15. Geissmann T., Possedko M., Huntzinger E., Fechter P., Ehresmann C., Romby P.. 2006; Regulatory RNAs as mediators of virulence Gene expression in Bacteria. Exp Pharmacol173:9–43
    [Google Scholar]
  16. Geissmann T., Chevalier C., Cros M.-J., Boisset S., Fechter P., Noirot C., Schrenzel J., Francois P., Vandenesch F. et al. 2009; A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nuc Acids Res37:7239–7257 [CrossRef]
    [Google Scholar]
  17. Giangrossi M., Prosseda G., Tran C. N., Brandi A., Colonna B., Falconi M.. 2010; A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res38:3362–3375 [CrossRef][PubMed]
    [Google Scholar]
  18. Gill S. R., Fouts D. E., Archer G. L., Mongodin E. F., Deboy R. T., Ravel J., Paulsen I. T., Kolonay J. F., Brinkac L., other authors. 2005; Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol187:2426–2438 [CrossRef][PubMed]
    [Google Scholar]
  19. Harris J. F., Micheva-Viteva S., Li N., Hong-Geller E.. 2013; Small RNA-Mediated regulation of host-pathogen interactions. Virul4:785–795
    [Google Scholar]
  20. Highlander S. K., Hultén K. G., Qin X., Jiang H., Yerrapragada S., Mason E. O., Shang Y., Williams T. M., Fortunov R. M., other authors. 2007; Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus. BMC Microbiol7:99 [CrossRef][PubMed]
    [Google Scholar]
  21. Hobbs E. C., Fontaine F., Yin X., Storz G.. 2011; An expanding universe of small proteins. Cur Opinion Microbiol14:167–173 [CrossRef]
    [Google Scholar]
  22. Hoe C. H., Raabe C. A., Rozhdestvensky T. S., Tang T. H.. 2013; Bacterial sRNAs: regulation in stress. Int J Med Microbiol303:217–229 [CrossRef][PubMed]
    [Google Scholar]
  23. Howden B. P., Beaume M., Harrison P. F., Hernandez D., Schrenzel J., Seemann T., Francois P., Stinear T. P.. 2013; Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure. Anti Agents Chemother57:3864–3874
    [Google Scholar]
  24. Jonas K., Melefors O.. 2009; The Escherichia coli CsrB and CsrC Small RNAs Are Strongly Induced during Growth in Nutrient-Poor Medium. FEMS Microbiol Letters297:80–86
    [Google Scholar]
  25. Kery M. B., Feldman M., Livny J., Tjaden B.. 2014; TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res42: W124–W129 [CrossRef][PubMed]
    [Google Scholar]
  26. Kolar S. L., Nagarajan V., Oszmiana A., Rivera F. E., Miller H. K., Davenport J. E., Riordan J. T., Potempa J., Barber D. S. et al. 2011; NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. Microbiology157:2206–2219 [CrossRef][PubMed]
    [Google Scholar]
  27. Kolar S. L., Ibarra J. A., Rivera F. E., Mootz J. M., Davenport J. E., Stevens S. M., Horswill A. R., Shaw L. N.. 2013; Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiologyopen2:18–34 [CrossRef][PubMed]
    [Google Scholar]
  28. Liu M. Y., Gui G., Wei B., Preston J. F., Oakford L., Yüksel U., Giedroc D. P., Romeo T.. 1997; The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem272:17502–17510[PubMed]
    [Google Scholar]
  29. Lowy F. D.. 1998; Staphylococcus aureus infections. N Engl J Med339:520–532 [CrossRef][PubMed]
    [Google Scholar]
  30. Lowy F. D.. 2003; Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest111:1265–1273 [CrossRef][PubMed]
    [Google Scholar]
  31. Marchais A., Naville M., Bohn C., Bouloc P., Gautheret D.. 2009; Single-pass classification of all noncoding sequences in a bacterial genome using phylogenetic profiles. Genome Res19:1084–1092 [CrossRef][PubMed]
    [Google Scholar]
  32. Murphy E., Broach W., Kouse A. B.. 2014; Prokaryotic Gene Regulation by Small RNAs [Online]. In Molecular Life Sciences pp.1–6 Edited by Bell E.. New York, NY: Springer New York;
    [Google Scholar]
  33. Nawrocki E. P., Burge S. W., Bateman A., Daub J., Eberhardt R. Y., Eddy S. R., Floden E. W., Gardner P. P., Jones T. A.. 2015; Rfam 12.0: updates to the RNA families database. Nucleic Acids Res43:D130–D137 [CrossRef][PubMed]
    [Google Scholar]
  34. Nielsen J. S., Christiansen M. H., Bonde M., Gottschalk S., Frees D., Thomsen L. E., Kallipolitis B. H.. 2011; Searching for small σB-regulated genes in Staphylococcus aureus. Arch Microbiol193:23–34 [CrossRef][PubMed]
    [Google Scholar]
  35. Oliva G., Sahr T., Buchrieser C.. 2015; Small RNAs, 5' UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. FEMS Microbiol Rev39:331–349 [CrossRef][PubMed]
    [Google Scholar]
  36. Olson P. D., Kuechenmeister L. J., Anderson K. L., Daily S., Beenken K. E., Roux C. M., Reniere M. L., Lewis T. L., Weiss W. J.. 2011; Small molecule inhibitors of Staphylococcus aureus RnpA alter cellular mRNA turnover, exhibit antimicrobial activity, and attenuate pathogenesis. PLoS Pathog7:e1001287 [CrossRef][PubMed]
    [Google Scholar]
  37. Otto M.. 2009; Staphylococcus epidermidis--the 'accidental' pathogen. Nat Rev Microbiol7:555–567 [CrossRef][PubMed]
    [Google Scholar]
  38. Papenfort K., Vogel J.. 2014; Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol4: Available fromhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098024/ Accessed 23 August 2015 [CrossRef][PubMed]
    [Google Scholar]
  39. Papenfort K., Vanderpool C. K.. 2015; Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev39:362–378 [CrossRef][PubMed]
    [Google Scholar]
  40. Pichon C., Felden B.. 2005; Small RNA genesexpressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci U S A102:14249–14254 [CrossRef][PubMed]
    [Google Scholar]
  41. Richardson E. J., Watson M.. 2013; The automatic annotation of bacterial genomes. Brief Bioinform14:1–12 [CrossRef][PubMed]
    [Google Scholar]
  42. Rosenstein R., Nerz C., Biswas L., Resch A., Raddatz G., Schuster S. C., Gotz F.. 2009; Genome Analysis of the Meat Starter Culture Bacterium Staphylococcus carnosus TM300. Applied and Environmental Microbiology. 75811–822
  43. Schleifer K. H., Fischer U.. 1982; Description of a New Species of the Genus Staphylococcus: Staphylococcus carnosus. Int J Syst Bacteriol32:153–156
    [Google Scholar]
  44. Sridhar J., Gunasekaran P.. 2013; Computational small RNA prediction in bacteria. Bioinform Biol Insights7:83–95 pp. [CrossRef][PubMed]
    [Google Scholar]
  45. Stec-Niemczyk J., Pustelny K., Kisielewska M., Bista M., Boulware K. T., Stennicke H. R., Thogersen I. B., Daugherty P. S., Enghild J. J.. 2009; Structural and functional characterization of SplA, an exclusively specific protease of Staphylococcus aureus. Biochem J419:555–564 [CrossRef][PubMed]
    [Google Scholar]
  46. Storz G., Wolf Y. I., Ramamurthi K. S.. 2014; Small proteins can no longer be ignored. Annu Rev Biochem83:753–777 [CrossRef][PubMed]
    [Google Scholar]
  47. Tatusova T., Ciufo S., Federhen S., Fedorov B., McVeigh R., O'Neill K., Tolstoy I., Zaslavsky L.. 2015; Update on RefSeq Microbial Genomes Resources. Nucleic Acids Res43:D599–D605 [CrossRef][PubMed]
    [Google Scholar]
  48. Tree J. J., Granneman S., McAteer S. P., Tollervey D., Gally D. L.. 2014; Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol Cell55:199–213 [CrossRef][PubMed]
    [Google Scholar]
  49. Wagner E., Doskar J., Götz F.. 1998; Physical and genetic map of the genome of Staphylococcus carnosus TM300. Microbiology144:509–517 [CrossRef][PubMed]
    [Google Scholar]
  50. Weiberg A., Bellinger M., Jin H.. 2015; Conversations between kingdoms: small RNAs. Curr Opin Biotechnol32:207–215 [CrossRef][PubMed]
    [Google Scholar]
  51. Weilbacher T., Suzuki K., Dubey A. K., Wang X., Gudapaty S., Morozov I., Baker C. S., Georgellis D., Babitzke P., Romeo T.. 2003; A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol48:657–670[PubMed]
    [Google Scholar]
  52. Weiss A., Broach W. H., Lee M. C., Shaw L. N.. 2015; Towards the Complete Small RNome of Acinetobacter baumannii. Microbial Genomics [Online]
    [Google Scholar]
  53. Wright P. R., Georg J., Mann M., Sorescu D. A., Richter A. S., Lott S., Kleinkauf R., Hess W. R., Backofen R.. 2014; CopraRNA and IntaRNA: predicting small RNA targets, networks and Interaction domains. Nucleic Acids Res42:W119–W123 [CrossRef][PubMed]
    [Google Scholar]
  54. Xue T., Zhang X., Sun H., Sun B.. 2014; ArtR, a novel sRNA of Staphylococcus aureus, regulates α-toxin expression by targeting the 5' UTR of sarT mRNA. Med Microbiol Immunol203:1–12 [CrossRef][PubMed]
    [Google Scholar]
  55. Zuker M.. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
  56. Broach, W. H., Weiss, A. & Shaw, L. N. NCBI Gene Expression Omnibus, GSE77567 (2016)
  57. Broach, W. H., Weiss, A. & Shaw, L. N. Figshare 10.6084/m9.figshare.3385861 (2016)
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000065
Loading
/content/journal/mgen/10.1099/mgen.0.000065
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

EXCEL

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error