1887

Abstract

Next-generation sequencing technologies have dramatically increased the rate at which new genomes are sequenced. Accordingly, automated annotation programs have become adept at identifying and annotating protein coding regions, as well as common and conserved RNAs. Additionally, RNAseq techniques have advanced our ability to identify and annotate regulatory RNAs (sRNAs), which remain significantly understudied. Recently, our group catalogued and annotated all previously known and newly identified sRNAs in several Staphylococcus aureus strains. These complete annotation files now serve as tools to compare the sRNA content of S. aureus with other bacterial strains to investigate the conservation of their sRNomes. Accordingly, in this study we performed RNAseq on two staphylococcal species, Staphylococcus epidermidis and Staphylococcus carnosus, identifying 118 and 89 sRNAs in these organisms, respectively. The sRNA contents of all three species were then compared to elucidate their common and species-specific sRNA content, identifying a core set of between 53 and 36 sRNAs encoded in each organism. In addition, we determined that S. aureus has the largest set of unique sRNAs (137) while S. epidermidishas the fewest (25). Finally, we identify a highly conserved sequence and structural motif differentially represented within, yet common to, both S. aureus and S. epidermidis. Collectively, in this study, we uncover the sRNome common to three staphylococcal species, shedding light on sRNAs that are likely to be involved in basic physiological processes common to the genus. More significantly, we have identified species-specific sRNAs that are likely to influence the individual lifestyle and behaviour of these diverse staphylococcal strains.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000065
2016-04-26
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/7/mgen000065.html?itemId=/content/journal/mgen/10.1099/mgen.0.000065&mimeType=html&fmt=ahah

References

  1. Abu-Qatouseh L. F., Chinni S. V., Seggewiss J., Proctor R. A., Brosius J., Rozhdestvensky T. S., Peters G., von Eiff C., Becker K. 2010; Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J Mol Med (Berl) 88:565–575 [View Article][PubMed]
    [Google Scholar]
  2. Anderson K. L., Roberts C., Disz T., Vonstein V., Hwang K., Overbeek R., Olson P. D., Projan S. J., Dunman P. M. 2006; Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188:6739–6756 [View Article][PubMed]
    [Google Scholar]
  3. Anderson K. L., Roux C. M., Olson M. W., Luong T. T., Lee C. Y., Olson R., Dunman P. M. 2010; Characterizing the effects of Inorganic Acid and Alkaline shock on the Staphylococcus aureus Transcriptome and Messenger RNA turnover. FEMS Immun Med Mic 60:208–250
    [Google Scholar]
  4. Archer G. L. 1998; Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26:1179–1181[PubMed]
    [Google Scholar]
  5. Beaume M., Hernandez D., Farinelli L., Deluen C., Linder P., Gaspin C., Romby P., Schrenzel J., Francois P. 2010; Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLoS One 5:e10725 [View Article][PubMed]
    [Google Scholar]
  6. Beisel C. L., Storz G. 2010; Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 34:866–882 [View Article][PubMed]
    [Google Scholar]
  7. Bohn C., Rigoulay C., Chabelskaya S., Sharma C. M., Marchais A., Skorski P., Borezée-Durant E., Barbet R., Jacquet E., other authors. 2010; Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nuc Acid Res 38:6620–6636
    [Google Scholar]
  8. Broach W. H., Egan N., Wing H. J., Payne S. M., Murphy E. R. 2012; VirF-independent regulation of Shigella virB transcription is mediated by the small RNA RyhB. PLoS One 7:e38592 [View Article][PubMed]
    [Google Scholar]
  9. Busch A., Richter A. S., Backofen R. 2008; IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. B Informatics 24:2849–2856
    [Google Scholar]
  10. Caron M. P., Lafontaine D. A., Massé E. 2010; Small RNA-mediated regulation at the level of transcript stability. RNA Biol 7:140–144[PubMed]
    [Google Scholar]
  11. Carroll R. K., Weiss A., Shaw L. N. 2014; RNA-Sequencing of Staphylococcus aureus Messenger RNA [Online]. In The Genetic Manipulation of Staphylococci Vol. 1373 pp. 131–141 Edited by Bose J. L. New York, NY: Springer New York; Available from: [Accessed 25 November 2015]
    [Google Scholar]
  12. Carroll R. K., Weiss A., Broach W. H., Wiemels R. E., Mogen A. B., Rice K. C., Shaw L. N. 2016; Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus . MBio 7:e0199015 [View Article][PubMed]
    [Google Scholar]
  13. Caswell C. C., Gaines J. M., Ciborowski P., Smith D., Borchers C. H., Roux C. M., Sayood K., Dunman P. M., Roop Ii R. M. 2012; Identification of two small regulatory RNAs linked to virulence in Brucella abortus 2308. Mol Microbiol 85:345–360 [View Article][PubMed]
    [Google Scholar]
  14. Dark M. J. 2013; Whole-Genome sequencing in bacteriology: state of the art. Infect Drug Res 6:115–123
    [Google Scholar]
  15. Geissmann T., Possedko M., Huntzinger E., Fechter P., Ehresmann C., Romby P. 2006; Regulatory RNAs as mediators of virulence Gene expression in Bacteria. Exp Pharmacol 173:9–43
    [Google Scholar]
  16. Geissmann T., Chevalier C., Cros M.-J., Boisset S., Fechter P., Noirot C., Schrenzel J., Francois P., Vandenesch F. et al. 2009; A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nuc Acids Res 37:7239–7257 [View Article]
    [Google Scholar]
  17. Giangrossi M., Prosseda G., Tran C. N., Brandi A., Colonna B., Falconi M. 2010; A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 38:3362–3375 [View Article][PubMed]
    [Google Scholar]
  18. Gill S. R., Fouts D. E., Archer G. L., Mongodin E. F., Deboy R. T., Ravel J., Paulsen I. T., Kolonay J. F., Brinkac L., other authors. 2005; Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438 [View Article][PubMed]
    [Google Scholar]
  19. Harris J. F., Micheva-Viteva S., Li N., Hong-Geller E. 2013; Small RNA-Mediated regulation of host-pathogen interactions. Virul 4:785–795
    [Google Scholar]
  20. Highlander S. K., Hultén K. G., Qin X., Jiang H., Yerrapragada S., Mason E. O., Shang Y., Williams T. M., Fortunov R. M., other authors. 2007; Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus . BMC Microbiol 7:99 [View Article][PubMed]
    [Google Scholar]
  21. Hobbs E. C., Fontaine F., Yin X., Storz G. 2011; An expanding universe of small proteins. Cur Opinion Microbiol 14:167–173 [View Article]
    [Google Scholar]
  22. Hoe C. H., Raabe C. A., Rozhdestvensky T. S., Tang T. H. 2013; Bacterial sRNAs: regulation in stress. Int J Med Microbiol 303:217–229 [View Article][PubMed]
    [Google Scholar]
  23. Howden B. P., Beaume M., Harrison P. F., Hernandez D., Schrenzel J., Seemann T., Francois P., Stinear T. P. 2013; Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure. Anti Agents Chemother 57:3864–3874
    [Google Scholar]
  24. Jonas K., Melefors O. 2009; The Escherichia coli CsrB and CsrC Small RNAs Are Strongly Induced during Growth in Nutrient-Poor Medium. FEMS Microbiol Letters 297:80–86
    [Google Scholar]
  25. Kery M. B., Feldman M., Livny J., Tjaden B. 2014; TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res 42: W124–W129 [View Article][PubMed]
    [Google Scholar]
  26. Kolar S. L., Nagarajan V., Oszmiana A., Rivera F. E., Miller H. K., Davenport J. E., Riordan J. T., Potempa J., Barber D. S. et al. 2011; NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus . Microbiology 157:2206–2219 [View Article][PubMed]
    [Google Scholar]
  27. Kolar S. L., Ibarra J. A., Rivera F. E., Mootz J. M., Davenport J. E., Stevens S. M., Horswill A. R., Shaw L. N. 2013; Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiologyopen 2:18–34 [View Article][PubMed]
    [Google Scholar]
  28. Liu M. Y., Gui G., Wei B., Preston J. F., Oakford L., Yüksel U., Giedroc D. P., Romeo T. 1997; The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 272:17502–17510[PubMed]
    [Google Scholar]
  29. Lowy F. D. 1998; Staphylococcus aureus infections. N Engl J Med 339:520–532 [View Article][PubMed]
    [Google Scholar]
  30. Lowy F. D. 2003; Antimicrobial resistance: the example of Staphylococcus aureus . J Clin Invest 111:1265–1273 [View Article][PubMed]
    [Google Scholar]
  31. Marchais A., Naville M., Bohn C., Bouloc P., Gautheret D. 2009; Single-pass classification of all noncoding sequences in a bacterial genome using phylogenetic profiles. Genome Res 19:1084–1092 [View Article][PubMed]
    [Google Scholar]
  32. Murphy E., Broach W., Kouse A. B. 2014; Prokaryotic Gene Regulation by Small RNAs [Online]. In Molecular Life Sciences pp. 1–6 Edited by Bell E. New York, NY: Springer New York;
    [Google Scholar]
  33. Nawrocki E. P., Burge S. W., Bateman A., Daub J., Eberhardt R. Y., Eddy S. R., Floden E. W., Gardner P. P., Jones T. A. 2015; Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43:D130–D137 [View Article][PubMed]
    [Google Scholar]
  34. Nielsen J. S., Christiansen M. H., Bonde M., Gottschalk S., Frees D., Thomsen L. E., Kallipolitis B. H. 2011; Searching for small σB-regulated genes in Staphylococcus aureus . Arch Microbiol 193:23–34 [View Article][PubMed]
    [Google Scholar]
  35. Oliva G., Sahr T., Buchrieser C. 2015; Small RNAs, 5' UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. FEMS Microbiol Rev 39:331–349 [View Article][PubMed]
    [Google Scholar]
  36. Olson P. D., Kuechenmeister L. J., Anderson K. L., Daily S., Beenken K. E., Roux C. M., Reniere M. L., Lewis T. L., Weiss W. J. 2011; Small molecule inhibitors of Staphylococcus aureus RnpA alter cellular mRNA turnover, exhibit antimicrobial activity, and attenuate pathogenesis. PLoS Pathog 7:e1001287 [View Article][PubMed]
    [Google Scholar]
  37. Otto M. 2009; Staphylococcus epidermidis--the 'accidental' pathogen. Nat Rev Microbiol 7:555–567 [View Article][PubMed]
    [Google Scholar]
  38. Papenfort K., Vogel J. 2014; Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol 4: Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098024/ Accessed 23 August 2015 [View Article][PubMed]
    [Google Scholar]
  39. Papenfort K., Vanderpool C. K. 2015; Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 39:362–378 [View Article][PubMed]
    [Google Scholar]
  40. Pichon C., Felden B. 2005; Small RNA genesexpressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci U S A 102:14249–14254 [View Article][PubMed]
    [Google Scholar]
  41. Richardson E. J., Watson M. 2013; The automatic annotation of bacterial genomes. Brief Bioinform 14:1–12 [View Article][PubMed]
    [Google Scholar]
  42. Rosenstein R., Nerz C., Biswas L., Resch A., Raddatz G., Schuster S. C., Gotz F. 2009; Genome Analysis of the Meat Starter Culture Bacterium Staphylococcus carnosus TM300. Applied and Environmental Microbiology. 75811–822
  43. Schleifer K. H., Fischer U. 1982; Description of a New Species of the Genus Staphylococcus: Staphylococcus carnosus . Int J Syst Bacteriol 32:153–156
    [Google Scholar]
  44. Sridhar J., Gunasekaran P. 2013; Computational small RNA prediction in bacteria. Bioinform Biol Insights 7:83–95 pp. [View Article][PubMed]
    [Google Scholar]
  45. Stec-Niemczyk J., Pustelny K., Kisielewska M., Bista M., Boulware K. T., Stennicke H. R., Thogersen I. B., Daugherty P. S., Enghild J. J. 2009; Structural and functional characterization of SplA, an exclusively specific protease of Staphylococcus aureus . Biochem J 419:555–564 [View Article][PubMed]
    [Google Scholar]
  46. Storz G., Wolf Y. I., Ramamurthi K. S. 2014; Small proteins can no longer be ignored. Annu Rev Biochem 83:753–777 [View Article][PubMed]
    [Google Scholar]
  47. Tatusova T., Ciufo S., Federhen S., Fedorov B., McVeigh R., O'Neill K., Tolstoy I., Zaslavsky L. 2015; Update on RefSeq Microbial Genomes Resources. Nucleic Acids Res 43:D599–D605 [View Article][PubMed]
    [Google Scholar]
  48. Tree J. J., Granneman S., McAteer S. P., Tollervey D., Gally D. L. 2014; Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli . Mol Cell 55:199–213 [View Article][PubMed]
    [Google Scholar]
  49. Wagner E., Doskar J., Götz F. 1998; Physical and genetic map of the genome of Staphylococcus carnosus TM300. Microbiology 144:509–517 [View Article][PubMed]
    [Google Scholar]
  50. Weiberg A., Bellinger M., Jin H. 2015; Conversations between kingdoms: small RNAs. Curr Opin Biotechnol 32:207–215 [View Article][PubMed]
    [Google Scholar]
  51. Weilbacher T., Suzuki K., Dubey A. K., Wang X., Gudapaty S., Morozov I., Baker C. S., Georgellis D., Babitzke P., Romeo T. 2003; A novel sRNA component of the carbon storage regulatory system of Escherichia coli . Mol Microbiol 48:657–670[PubMed]
    [Google Scholar]
  52. Weiss A., Broach W. H., Lee M. C., Shaw L. N. 2015; Towards the Complete Small RNome of Acinetobacter baumannii . Microbial Genomics [Online]
    [Google Scholar]
  53. Wright P. R., Georg J., Mann M., Sorescu D. A., Richter A. S., Lott S., Kleinkauf R., Hess W. R., Backofen R. 2014; CopraRNA and IntaRNA: predicting small RNA targets, networks and Interaction domains. Nucleic Acids Res 42:W119–W123 [View Article][PubMed]
    [Google Scholar]
  54. Xue T., Zhang X., Sun H., Sun B. 2014; ArtR, a novel sRNA of Staphylococcus aureus, regulates α-toxin expression by targeting the 5' UTR of sarT mRNA. Med Microbiol Immunol 203:1–12 [View Article][PubMed]
    [Google Scholar]
  55. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [View Article][PubMed]
    [Google Scholar]
  56. Broach, W. H., Weiss, A. & Shaw, L. N. NCBI Gene Expression Omnibus, GSE77567 (2016)
  57. Broach, W. H., Weiss, A. & Shaw, L. N. Figshare 10.6084/m9.figshare.3385861 (2016)
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000065
Loading
/content/journal/mgen/10.1099/mgen.0.000065
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error