1887

Abstract

Insertion sequence (IS) elements are important mediators of genome plasticity and can lead to phenotypic changes with evolutionary significance. In multidrug-resistant Acinetobacter baumannii and Klebsiella pneumoniae, IS elements have contributed significantly to the mobilization of genes that encode resistance to antimicrobial drugs. A systematic analysis of IS elements is needed for a more comprehensive understanding of their evolutionary impact. We developed a computational approach (ISseeker) to annotate IS elements in draft genome assemblies and applied the method to analysis of IS elements in all publicly available A. baumannii(>1000) and K. pneumoniae(>800) genome sequences, in a phylogenetic context. Most IS elements in A. baumanniigenomes are species-specific ISAba elements, whereas K. pneumoniaegenomes contain significant numbers of both ISKpn elements and elements that are found throughout the Enterobacteriaceae. A. baumanniigenomes have a higher density of IS elements than K. pneumoniae, averaging ~33 vs ~27 copies per genome. In K. pneumoniae, several insertion sites are shared by most genomes in the ST258 clade, whereas in A. baumannii, different IS elements are abundant in different phylogenetic groups, even among closely related Global Clone 2 strains. IS elements differ in the distribution of insertion locations relative to genes, with some more likely to disrupt genes and others predominantly in intergenic regions. Several genes and intergenic regions had multiple independent insertion events, suggesting that those events may confer a selective advantage. Genome- and taxon-wide characterization of insertion locations revealed that IS elements have been active contributors to genome diversity in both species.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000062
2016-04-18
2019-08-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/7/mgen000062.html?itemId=/content/journal/mgen/10.1099/mgen.0.000062&mimeType=html&fmt=ahah

References

  1. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S et al. 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  2. Barrick J. E., Colburn G., Deatherage D. E., Traverse C. C., Strand M. D., Borges J. J., Knoester D. B., Reba A., Meyer A. G.. 2014; Identifying structural variation in haploid microbial genomes from short-read resequencing data using breseq. BMC Genomics15:1039 [CrossRef][PubMed]
    [Google Scholar]
  3. Bennett P. M.. 2004; Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Methods Mol Biol266:71–113 [CrossRef][PubMed]
    [Google Scholar]
  4. Blackwell G. A., Nigro S. J., Hall R. M.. 2015; Evolution of AbGRI2-0, the progenitor of the AbGRI2 resistance island in Global Clone 2 of Acinetobacter baumannii. Antimicrob Agents Chemother60:1421–1429 [CrossRef][PubMed]
    [Google Scholar]
  5. Bonnin R. A., Poirel L., Nordmann P.. 2012; A novel and hybrid composite transposon at the origin of acquisition of bla(RTG-5) in Acinetobacter baumannii. Int J Antimicrob Agents40:257–259 [CrossRef][PubMed]
    [Google Scholar]
  6. Bowers J. R., Kitchel B., Driebe E. M., MacCannell D. R., Roe C., Lemmer D., de Man T., Rasheed J. K., Engelthaler D. M. et al. 2015; Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS One10:e0133727 [CrossRef][PubMed]
    [Google Scholar]
  7. Corvec S., Caroff N., Espaze E., Giraudeau C., Drugeon H., Reynaud A.. 2003; AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J Antimicrob Chemother52:629–635 [CrossRef][PubMed]
    [Google Scholar]
  8. Deleo F. R., Chen L., Porcella S. F., Martens C. A., Kobayashi S. D., Porter A. R., Chavda K. D., Jacobs M. R., Mathema B. et al. 2014; Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci U S A111:4988–4993 [CrossRef][PubMed]
    [Google Scholar]
  9. Diancourt L., Passet V., Nemec A., Dijkshoorn L., Brisse S.. 2010; The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One5:e10034 [CrossRef][PubMed]
    [Google Scholar]
  10. Gaffé J., McKenzie C., Maharjan R. P., Coursange E., Ferenci T., Schneider D.. 2011; Insertion sequence-driven evolution of Escherichia coli in chemostats. J Mol Evol72:398–412 [CrossRef][PubMed]
    [Google Scholar]
  11. Hamidian M., Hall R. M.. 2013; ISAba1 targets a specific position upstream of the intrinsic ampC gene of Acinetobacter baumannii leading to cephalosporin resistance. J Antimicrob Chemother68:2682–2683 [CrossRef][PubMed]
    [Google Scholar]
  12. Hawkey J., Hamidian M., Wick R. R., Edwards D. J., Billman-Jacobe H., Hall R. M., Holt K. E.. 2015; ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genomics16:667 [CrossRef][PubMed]
    [Google Scholar]
  13. Héritier C., Poirel L., Nordmann P.. 2006; Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin Microbiol Infect12:123–130 [CrossRef][PubMed]
    [Google Scholar]
  14. Lemmer D., Travis J., Schupp J., Gillece J., Aziz M., Driebe E. M., Drees K., Hicks N., Williamson C.. 2016; The Northern Arizona SNP Pipeline (NASP): accurate, flexible, and rapid identification of SNPs in WGS datasets. bioRxiv
    [Google Scholar]
  15. Letunic I., Bork P.. 2011; Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res39:475–478 [CrossRef][PubMed]
    [Google Scholar]
  16. Liou M. L., Liu C. C., Lu C. W., Hsieh M. F., Chang K. C., Kuo H. Y., Lee C. C., Chang C. T., Yang C. Y., Yang C. Y.. 2012; Genome sequence of Acinetobacter baumannii TYTH-1. J Bacteriol194:6974 [CrossRef][PubMed]
    [Google Scholar]
  17. Lopes B. S., Amyes S. G.. 2012; Role of ISAba1 and ISAba125 in governing the expression of blaADC in clinically relevant Acinetobacter baumannii strains resistant to cephalosporins. J Med Microbiol61:1103–1108 [CrossRef][PubMed]
    [Google Scholar]
  18. Miller J. R., Koren S., Sutton G.. 2010; Assembly algorithms for next-generation sequencing data. Genomics95:315–327 [CrossRef][PubMed]
    [Google Scholar]
  19. Mugnier P. D., Poirel L., Nordmann P.. 2009; Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii. J Bacteriol191:2414–2418 [CrossRef][PubMed]
    [Google Scholar]
  20. Naas T., Cuzon G., Villegas M. V., Lartigue M. F., Quinn J. P., Nordmann P.. 2008; Genetic structures at the origin of acquisition of the beta-lactamase blaKPC gene. Antimicrob Agents Chemother 52:1257–1263 [CrossRef][PubMed]
    [Google Scholar]
  21. Nakagome M., Solovieva E., Takahashi A., Yasue H., Hirochika H., Miyao A.. 2014; Transposon insertion finder (TIF): a novel program for detection of de novo transpositions of transposable elements. BMC Bioinformatics15:71 [CrossRef][PubMed]
    [Google Scholar]
  22. Nemec A., Dijkshoorn L., van der Reijden T. J.. 2004; Long-term predominance of two pan-European clones among multi-resistant Acinetobacter baumannii strains in the Czech Republic. J Med Microbiol53:147–153 [CrossRef][PubMed]
    [Google Scholar]
  23. Nemec A., Krízová L., Maixnerová M., Diancourt L., van der Reijden T. J., Brisse S., van den Broek P., Dijkshoorn L.. 2008; Emergence of carbapenem resistance in Acinetobacter baumannii in the Czech Republic is associated with the spread of multidrug-resistant strains of European clone II. J Antimicrob Chemother62:484–489 [CrossRef][PubMed]
    [Google Scholar]
  24. Ooka T., Ogura Y., Asadulghani M., Ohnishi M., Nakayama K., Terajima J., Watanabe H., Hayashi T.. 2009; Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res19:1809–1816 [CrossRef][PubMed]
    [Google Scholar]
  25. Poirel L., Nordmann P.. 2006; Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene blaOxa-58 in Acinetobacter baumannii. Antimicrob Agents Chemother50:1442–1448 [CrossRef][PubMed]
    [Google Scholar]
  26. Poirel L., Bonnin R. A., Nordmann P.. 2011; Analysis of the resistome of a multidrug-resistant Ndm-1-producing Escherichia coli strain by high-throughput genome sequencing. Antimicrob Agents Chemother (Bethesda)55:4224–4229 [CrossRef]
    [Google Scholar]
  27. Poirel L., Bonnin R. A., Boulanger A., Schrenzel J., Kaase M., Nordmann P.. 2012; Tn125-related acquisition of blaNdm-like genes in Acinetobacter baumannii. Antimicrob Agents Chemother56:1087–1089 [CrossRef]
    [Google Scholar]
  28. Potron A., Poirel L., Croize J., Chanteperdrix V., Nordmann P.. 2009; Genetic and biochemical characterization of the first extended-spectrum Carb-type ss-lactamase, RTG-4, from Acinetobacter baumannii. Antimicrob Agents Chemother 53:3010–3016 [CrossRef]
    [Google Scholar]
  29. Price M. N., Dehal P. S., Arkin A. P.. 2010; FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  30. Siguier P., Gourbeyre E., Chandler M.. 2014; Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev38:865–891 [CrossRef][PubMed]
    [Google Scholar]
  31. Siguier P., Perochn J., Lestrade L., Mahillon J., Chandler M.. 2006; ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res34:32–36 [CrossRef][PubMed]
    [Google Scholar]
  32. Turton J. F., Ward M. E., Woodford N., Kaufmann M. E., Pike R., Livermore D. M., Pitt T. L.. 2006; The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett258:72–77 [CrossRef][PubMed]
    [Google Scholar]
  33. Vallenet D., Nordmann P., Barbe V., Poirel L., Mangenot S., Bataille E., Dossat C., Gas S., Kreimeyer A. et al. 2008; Comparative analysis of Acinetobacters: three genomes for three lifestyles. PLoS One3:e1805 [CrossRef][PubMed]
    [Google Scholar]
  34. Wright M. S., Haft D. H., Harkins D. M., Perez F., Hujer K. M., Bajaksouzian S., Benard M. F., Jacobs M. R., Bonomo R. A.. 2014; New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio5:e0096313 [CrossRef][PubMed]
    [Google Scholar]
  35. Wright M. S., Iovleva A., Jacobs M. R., Bonomo R. A., Adams M. D.. 2016; Genome dynamics of multidrug-resistant Acinetobacter baumannii during infection and treatment. Genome Med8:26 [CrossRef][PubMed]
    [Google Scholar]
  36. Zerbino D. R., Birney E.. 2008; Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  37. Adams, M.D., Bishop, B., Wright, M.S. The IS seeker softwarehttp://github.com/Jcvi-Virifx/ISseeker 2016
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000062
Loading
/content/journal/mgen/10.1099/mgen.0.000062
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error