1887

Abstract

Comparative genomics approaches are broadly used for analysis of transcriptional regulation in bacterial genomes. In this work, we identified binding sites and reconstructed regulons for 33 orthologous groups of transcription factors (TFs) in 196 reference genomes from 21 taxonomic groups of Proteobacteria. Overall, we predict over 10 600 TF binding sites and identified more than 15 600 target genes for 1896 TFs constituting the studied orthologous groups of regulators. These include a set of orthologues for 21 metabolism-associated TFs from Escherichia coli and/or Shewanella that are conserved in five or more taxonomic groups and several additional TFs that represent non-orthologous substitutions of the metabolic regulators in some lineages of Proteobacteria. By comparing gene contents of the reconstructed regulons, we identified the core, taxonomy-specific and genome-specific TF regulon members and classified them by their metabolic functions. Detailed analysis of ArgR, TyrR, TrpR, HutC, HypR and other amino-acid-specific regulons demonstrated remarkable differences in regulatory strategies used by various lineages of Proteobacteria. The obtained genomic collection of in silico reconstructed TF regulons contains a large number of new regulatory interactions that await future experimental validation. The collection provides a framework for future evolutionary studies of transcriptional regulatory networks in Bacteria. It can be also used for functional annotation of putative metabolic transporters and enzymes that are abundant in the reconstructed regulons.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000061
2016-07-11
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/7/mgen000061.html?itemId=/content/journal/mgen/10.1099/mgen.0.000061&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Arias-Barrau E., Olivera E. R., Luengo J. M., Fernández C., Galán B., García J. L., Díaz E., Miñambres B.. 2004; The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol186:5062–5077 [CrossRef][PubMed]
    [Google Scholar]
  3. Beckett D.. 2005; The Escherichia coli biotin regulatory system: a transcriptional switch. J Nutr Biochem16:411–415 [CrossRef][PubMed]
    [Google Scholar]
  4. Browning D. F., Busby S. J.. 2004; The regulation of bacterial transcription initiation. Nat Rev Microbiol2:57–65 [CrossRef][PubMed]
    [Google Scholar]
  5. Coulson T. J., Patten C. L.. 2015; The Tyrr transcription factor regulates the divergent akr-ipdc operons of Enterobacter cloacae UW5. PLoS One10:e0121241 [CrossRef][PubMed]
    [Google Scholar]
  6. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.. 2004; Weblogo: a sequence logo generator. Genome Res14:1188–1190 [CrossRef][PubMed]
    [Google Scholar]
  7. Czernik P. J., Shin D. S., Hurlburt B. K.. 1994; Functional selection and characterization of DNA binding sites for trp repressor of Escherichia coli. J Biol Chem269:27869–27875[PubMed]
    [Google Scholar]
  8. Dehal P. S., Joachimiak M. P., Price M. N., Bates J. T., Baumohl J. K., Chivian D., Friedland G. D., Huang K. H., Keller K. et al. 2010; Microbesonline: an integrated portal for comparative and functional genomics. Nucleic Acids Res38:D396–D400 [CrossRef][PubMed]
    [Google Scholar]
  9. Feng Y., Xu J., Zhang H., Chen Z., Srinivas S.. 2013; Brucella BioR regulator defines a complex regulatory mechanism for bacterial biotin metabolism. J Bacteriol195:3451–3467 [CrossRef][PubMed]
    [Google Scholar]
  10. Feng Y., Kumar R., Ravcheev D. A., Zhang H.. 2015; Paracoccus denitrificans possesses two homologs having a role in regulation of biotin metabolism. Microbiologyopen4:644–659 [CrossRef][PubMed]
    [Google Scholar]
  11. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L. et al. 2014; Pfam: the protein families database. Nucleic Acids Res42:D222–D230 [CrossRef][PubMed]
    [Google Scholar]
  12. Gelfand M. S.. 2006; Evolution of transcriptional regulatory networks in microbial genomes. Curr Opin Struct Biol16:420–429 [CrossRef][PubMed]
    [Google Scholar]
  13. Goldberg R. B., Magasanik B.. 1975; Gene order of the histidine utilization (hut) operons in . J Bacteriol122:1025–1031[PubMed]
    [Google Scholar]
  14. Grainger D. C., Lee D. J., Busby S. J.. 2009; Direct methods for studying transcription regulatory proteins and RNA polymerase in bacteria. Curr Opin Microbiol12:531–535 [CrossRef][PubMed]
    [Google Scholar]
  15. Hebbeln P., Rodionov D. A., Alfandega A., Eitinger T.. 2007; Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc Natl Acad Sci U S A104:2909–2914 [CrossRef][PubMed]
    [Google Scholar]
  16. Herrera M. C., Duque E., Rodríguez-Herva J. J., Fernández-Escamilla A. M., Ramos J. L.. 2010; Identification and characterization of the PhhR regulon in Pseudomonas putida. Environ Microbiol12:1427–1438 [CrossRef][PubMed]
    [Google Scholar]
  17. Jeeves M., Evans P. D., Parslow R. A., Jaseja M., Hyde E. I.. 1999; Studies of the Escherichia coli Trp repressor binding to its five operators and to variant operator sequences. Eur J Biochem265:919–928 [CrossRef][PubMed]
    [Google Scholar]
  18. Kanehisa M., Goto S.. 2000; KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res28:27–30 [CrossRef][PubMed]
    [Google Scholar]
  19. Karp P. D., Weaver D., Paley S., Fulcher C., Kubo A., Kothari A., Krummenacker M., Subhraveti P., Weerasinghe D. et al. 2014; The EcoCyc Database. EcoSal Plus6: [CrossRef][PubMed]
    [Google Scholar]
  20. Kazakov A. E., Rodionov D. A., Alm E., Arkin A. P., Dubchak I., Gelfand M. S.. 2009; Comparative genomics of regulation of fatty acid and branched-chain amino acid utilization in Proteobacteria. J Bacteriol191:52–64 [CrossRef][PubMed]
    [Google Scholar]
  21. Novichkov P. S., Rodionov D. A., Stavrovskaya E. D., Novichkova E. S., Kazakov A. E., Gelfand M. S., Arkin A. P., Mironov A. A., Dubchak I.. 2010; RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach. Nucleic Acids Res38:W299–W307 [CrossRef][PubMed]
    [Google Scholar]
  22. Leyn S. A., Li X., Zheng Q., Novichkov P. S., Reed S., Romine M. F., Fredrickson J. K., Yang C., Osterman A. L., Rodionov D. A.. 2011; Control of proteobacterial central carbon metabolism by the HexR transcriptional regulator: a case study in Shewanella oneidensis. J Biol Chem286:35782–35794 [CrossRef][PubMed]
    [Google Scholar]
  23. Leyn S. A., Kazanov M. D., Sernova N. V., Ermakova E. O., Novichkov P. S., Rodionov D. A.. 2013; Genomic reconstruction of the transcriptional regulatory network in Bacillus subtilis. J Bacteriol195:2463–2473 [CrossRef][PubMed]
    [Google Scholar]
  24. Leyn S. A., Suvorova I. A., Kholina T. D., Sherstneva S. S., Novichkov P. S., Gelfand M. S., Rodionov D. A.. 2014; Comparative genomics of transcriptional regulation of methionine metabolism in Proteobacteria. PLoS One9:e113714 [CrossRef][PubMed]
    [Google Scholar]
  25. Masepohl B., Hallenbeck P. C.. 2010; Nitrogen and molybdenum control of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. Adv Exp Med Biol675:49–70 [CrossRef][PubMed]
    [Google Scholar]
  26. Minchin S. D., Busby S. J.. 2009; Analysis of mechanisms of activation and repression at bacterial promoters. Methods47:6–12 [CrossRef][PubMed]
    [Google Scholar]
  27. Novichkov P. S., Kazakov A. E., Ravcheev D. A., Leyn S. A., Kovaleva G. Y., Sutormin R. A., Kazanov M. D., Riehl W., Arkin A. P. et al. 2013; Regprecise 3.0 – a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics14:745 [CrossRef][PubMed]
    [Google Scholar]
  28. Overbeek R., Begley T., Butler R. M., Choudhuri J. V., Chuang H. Y., Cohoon M., de Crécy-Lagard V., Diaz N., Disz T. et al. 2005; The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res33:5691–5702 [CrossRef][PubMed]
    [Google Scholar]
  29. Palmer G. C., Palmer K. L., Jorth P. A., Whiteley M.. 2010; Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine. J Bacteriol192:2722–2728 [CrossRef][PubMed]
    [Google Scholar]
  30. Panina E. M., Vitreschak A. G., Mironov A. A., Gelfand M. S.. 2001; Regulation of aromatic amino acid biosynthesis in gamma-proteobacteria. J Mol Microbiol Biotechnol3:529–543[PubMed]
    [Google Scholar]
  31. Phang J. M., Liu W., Hancock C. N., Fischer J. W.. 2015; Proline metabolism and cancer: emerging links to glutamine and collagen. Curr Opin Clin Nutr Metab Care18:71–77 [CrossRef][PubMed]
    [Google Scholar]
  32. Pittard J., Camakaris H., Yang J.. 2005; The TyrR regulon. Mol Microbiol55:16–26 [CrossRef][PubMed]
    [Google Scholar]
  33. Pittard J., Yang J.. 2008; Biosynthesis of the aromatic amino acids. EcoSal Plus3: [CrossRef][PubMed]
    [Google Scholar]
  34. Ravcheev D. A., Best A. A., Tintle N., Dejongh M., Osterman A. L., Novichkov P. S., Rodionov D. A.. 2011; Inference of the transcriptional regulatory network in Staphylococcus aureus by integration of experimental and genomics-based evidence. J Bacteriol193:3228–3240 [CrossRef][PubMed]
    [Google Scholar]
  35. Ravcheev D. A., Best A. A., Sernova N. V., Kazanov M. D., Novichkov P. S., Rodionov D. A.. 2013; Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria. BMC Genomics14:94 [CrossRef][PubMed]
    [Google Scholar]
  36. Ravcheev D. A., Khoroshkin M. S., Laikova O. N., Tsoy O. V., Sernova N. V., Petrova S. A., Rakhmaninova A. B., Novichkov P. S., Gelfand M. S., Rodionov D. A.. 2014; Comparative genomics and evolution of regulons of the LacI-family transcription factors. Front Microbiol5:294 [CrossRef][PubMed]
    [Google Scholar]
  37. Reitzer L.. 2003; Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol57:155–176 [CrossRef][PubMed]
    [Google Scholar]
  38. Rodionov D. A., Gelfand M. S.. 2006; Computational identification of BioR, a transcriptional regulator of biotin metabolism in alphaproteobacteria, and of its binding signal. FEMS Microbiol Lett255:102–107 [CrossRef][PubMed]
    [Google Scholar]
  39. Rodionov D. A., Gelfand M. S., Todd J. D., Curson A. R., Johnston A. W.. 2006; Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol2:e163 [CrossRef][PubMed]
    [Google Scholar]
  40. Rodionov D. A.. 2007; Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev107:3467–3497 [CrossRef][PubMed]
    [Google Scholar]
  41. Rodionov D. A., De Ingeniis J., Mancini C., Cimadamore F., Zhang H., Osterman A. L., Raffaelli N.. 2008; Transcriptional regulation of NAD metabolism in bacteria: Nrtr family of Nudix-related regulators. Nucleic Acids Res36:2047–2059 [CrossRef][PubMed]
    [Google Scholar]
  42. Rodionov D. A., Novichkov P. S., Stavrovskaya E. D., Rodionova I. A., Li X., Kazanov M. D., Ravcheev D. A., Gerasimova A. V., Kazakov A. E. et al. 2011; Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus. BMC Genomics12:S3 [CrossRef][PubMed]
    [Google Scholar]
  43. Rodionov D. A., Rodionova I. A., Li X., Ravcheev D. A., Tarasova Y., Portnoy V. A., Zengler K., Osterman A. L.. 2013; Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima. Front Microbiol4:244 [CrossRef][PubMed]
    [Google Scholar]
  44. Smith H. Q., Somerville R. L.. 1997; The tpl promoter of Citrobacter freundii is activated by the TyrR protein. J Bacteriol179:5914–5921[PubMed]
    [Google Scholar]
  45. UniProt C.. 2014; Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res42:191–198
    [Google Scholar]
  46. White C. E., Gavina J. M., Morton R., Britz-McKibbin P., Finan T. M.. 2012; Control of hydroxyproline catabolism in Sinorhizobium meliloti. Mol Microbiol85:1133–1147 [CrossRef][PubMed]
    [Google Scholar]
  47. Yang J., Hwang J. S., Camakaris H., Irawaty W., Ishihama A., Pittard J.. 2004; Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli. Mol Microbiol52:243–256 [CrossRef][PubMed]
    [Google Scholar]
  48. Yang C., Rodionov D. A., Li X., Laikova O. N., Gelfand M. S., Zagnitko O. P., Romine M. F., Obraztsova A. Y., Nealson K. H. et al. 2006; Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J Biol Chem281:29872–29885 [CrossRef][PubMed]
    [Google Scholar]
  49. Zhang X. X., Rainey P. B.. 2007; Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25. Genetics176:2165–2176 [CrossRef][PubMed]
    [Google Scholar]
  50. Leyn, S. A., Suvorova, I. A., Kazakov, A. E., Ravcheev, D. A., Stepanova, V. V., Novichkov, P. S. & Rodionov, D. A. RegPrecise 4.0. Collection of regulogs for transcription factor families in Proteobacteriahttp://regprecise.lbl.gov/RegPrecise/project_proteobacteria.jsp 2016
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000061
Loading
/content/journal/mgen/10.1099/mgen.0.000061
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error