1887

Abstract

Phylodynamic reconstructions rely on a measurable molecular footprint of epidemic processes in pathogen genomes. Identifying the factors that govern the tempo and mode by which these processes leave a footprint in pathogen genomes represents an important goal towards understanding infectious disease evolution. Discriminating between synonymous and non-synonymous substitution rates is crucial for testing hypotheses about the sources of evolutionary rate variation. Here, we implement a codon substitution model in a Bayesian statistical framework to estimate absolute rates of synonymous and non-synonymous substitution in unknown evolutionary histories. To demonstrate how this model can provide critical insights into pathogen evolutionary dynamics, we adopt hierarchical phylogenetic modelling with fixed effects and apply it to two viral examples. Using within-host HIV-1 data from patients with different host genetic background and different disease progression rates, we show that viral populations undergo faster absolute synonymous substitution rates in patients with faster disease progression, probably reflecting faster replication rates. We also re-analyse rabies data from different bat species in the Americas to demonstrate that climate predicts absolute synonymous substitution rates, which can be attributed to climate-associated bat activity and viral transmission dynamics. In conclusion, our model to estimate absolute rates of synonymous and non-synonymous substitution can provide a powerful approach to investigate how host ecology can shape the tempo of pathogen evolution.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000057
2016-06-24
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/6/mgen000057.html?itemId=/content/journal/mgen/10.1099/mgen.0.000057&mimeType=html&fmt=ahah

References

  1. Ayres D. L., Darling A., Zwickl D. J., Beerli P., Holder M. T., Lewis P. O., Huelsenbeck J. P., Ronquist F., Swofford D. L. et al. 2012; BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst Biol61:170–173 [CrossRef][PubMed]
    [Google Scholar]
  2. Belshaw R., Gardner A., Rambaut A., Pybus O. G.. 2008; Pacing a small cage: mutation and RNA viruses. Trends Ecol Evol23:188–193 [CrossRef][PubMed]
    [Google Scholar]
  3. Drummond A. J., Suchard M. A., Xie D., Rambaut A.. 2012; Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol29:1969–1973 [CrossRef][PubMed]
    [Google Scholar]
  4. Dunbar M. B., Brigham R. M.. 2010; Thermoregulatory variation among populations of bats along a latitudinal gradient. J Comp Physiol B180:885–893
    [Google Scholar]
  5. Edo-Matas D., Lemey P., Tom J. A., Serna-Bolea C., van den Blink A. E., van 't Wout A. B., Schuitemaker H., Suchard M. A.. 2011; Impact of CCR5delta32 host genetic background and disease progression on HIV-1 intrahost evolutionary processes: efficient hypothesis testing through hierarchical phylogenetic models. Mol Biol Evol28:1605–1616 [CrossRef][PubMed]
    [Google Scholar]
  6. Edwards C. T., Holmes E. C., Wilson D. J., Viscidi R. P., Abrams E. J., Phillips R. E., Drummond A. J.. 2006; Population genetic estimation of the loss of genetic diversity during horizontal transmission of HIV-1. BMC Evol Biol6:28 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. 2004; Models of DNA evolution. In Inferring Phylogenies pp.196–221 Sunderland, MA: Sinauer Associates, Inc;
    [Google Scholar]
  8. Goldman N., Yang Z.. 1994; A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol11:725–736
    [Google Scholar]
  9. Hasegawa M., Kishino H., Yano T.. 1985; Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol22:160–174[PubMed]
    [Google Scholar]
  10. Hicks A. L., Duffy S.. 2014; Cell tropism predicts long-term nucleotide substitution rates of mammalian RNA viruses. PLoS Pathog10:e1003838 [CrossRef][PubMed]
    [Google Scholar]
  11. Holmes E. C.. 2009; The Evolution and Emergence of RNA Viruses New York: Oxford University Press;
    [Google Scholar]
  12. Kass R. E., Raftery A. E.. 1995; Bayes factors. J Am Stat Assoc90:773–795
    [Google Scholar]
  13. Kosakovsky Pond S., Muse S. V.. 2005; Site-to-site variation of synonymous substitution rates. Mol Biol Evol22:2375–2385 [CrossRef][PubMed]
    [Google Scholar]
  14. Kuo L., Mallick B.. 1998; Variable selection for regression models. Sankhya B60:65–81
    [Google Scholar]
  15. Lemey P., Kosakovsky Pond S. L., Drummond A. J., Pybus O. G., Shapiro B., Barroso H., Taveira N., Rambaut A.. 2007; Synonymous substitution rates predict HIV disease progression as a result of underlying replication dynamics. PLoS Comput Biol3:e29 [CrossRef][PubMed]
    [Google Scholar]
  16. Lemey P., Rambaut A., Bedford T., Faria N., Bielejec F., Baele G., Russell C. A., Smith D. J., Pybus O. G. et al. 2014; Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog10:e1003932 [CrossRef][PubMed]
    [Google Scholar]
  17. McNab B. K.. 1974; The behavior of temperate cave bats in a subtropical environment. Ecology55:943–958
    [Google Scholar]
  18. Muse S. V., Gaut B. S.. 1994; A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol11:715–724[PubMed]
    [Google Scholar]
  19. Pagel M., Meade A., Barker D.. 2004; Bayesian estimation of ancestral character states on phylogenies. Syst Biol53:673–684 [CrossRef][PubMed]
    [Google Scholar]
  20. Pybus O. G., Rambaut A., Belshaw R., Freckleton R. P., Drummond A. J., Holmes E. C.. 2007; Phylogenetic evidence for deleterious mutation load in RNA viruses and its contribution to viral evolution. Mol Biol Evol24:845–852 [CrossRef][PubMed]
    [Google Scholar]
  21. Pybus O. G., Rambaut A.. 2009; Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet10:540–550 [CrossRef][PubMed]
    [Google Scholar]
  22. Seo T. K., Thorne J. L., Hasegawa M., Kishino H.. 2002; A viral sampling design for testing the molecular clock and for estimating evolutionary rates and divergence times. Bioinformatics18:115–123[PubMed]
    [Google Scholar]
  23. Seo T. K., Kishino H., Thorne J. L.. 2004; Estimating absolute rates of synonymous and nonsynonymous nucleotide substitution in order to characterize natural selection and date species divergences. Mol Biol Evol21:1201–1213 [CrossRef][PubMed]
    [Google Scholar]
  24. Streicker D. G., Lemey P., Velasco-Villa A., Rupprecht C. E.. 2012a; Rates of viral evolution are linked to host geography in bat rabies. PLoS Pathog8:e1002720
    [Google Scholar]
  25. Streicker D. G., Altizer S. M., Velasco-Villa A., Rupprecht C. E.. 2012b; Variable evolutionary routes to host establishment across repeated rabies virus host shifts among bats. Proc Natl Acad Sci U S A109:19715–19720
    [Google Scholar]
  26. Suchard M. A., Kitchen C. M., Sinsheimer J. S., Weiss R. E.. 2003; Hierarchical phylogenetic models for analyzing multipartite sequence data. Syst Biol52:649–664 [CrossRef][PubMed]
    [Google Scholar]
  27. Suchard M. A., Rambaut A.. 2009; Many-core algorithms for statistical phylogenetics. Bioinformatics25:1370–1376 [CrossRef][PubMed]
    [Google Scholar]
  28. Vrancken B., Rambaut A., Suchard M. A., Drummond A., Baele G., Derdelinckx I., Van Wijngaerden E., Vandamme A. M., Van Laethem K. et al. 2014; The genealogical population dynamics of HIV-1 in a large transmission chain: bridging within and among host evolutionary rates. PLoS Comput Biol10:e1003505 [CrossRef][PubMed]
    [Google Scholar]
  29. Wertheim J. O., Kosakovsky Pond S. L.. 2011; Purifying selection can obscure the ancient age of viral lineages. Mol Biol Evol28:3355–3365 [CrossRef][PubMed]
    [Google Scholar]
  30. Woelk C. H., Holmes E. C.. 2002; Reduced positive selection in vector-borne RNA viruses. Mol Biol Evol19:2333–2336[PubMed]
    [Google Scholar]
  31. Yang Z.. 1996; Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol11:367–372[PubMed]
    [Google Scholar]
  32. Yang Z.. 2006; Models of amino acid and codon substitution. In Computational Molecular Evolution40–70 Edited by Harvey P. H., May R. M.. London: Oxford University Press;
    [Google Scholar]
  33. Baele, G., Suchard, M. A., Bielejec, F. & Lemey, P. Figsharehttps://dx.doi.org/10.6084/m9.figshare.2074231 (2016)
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000057
Loading
/content/journal/mgen/10.1099/mgen.0.000057
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error