1887

Abstract

Renibacterium salmoninarum is the causative agent of bacterial kidney disease, an important disease of farmed and wild salmonid fish worldwide. Despite the wide spatiotemporal distribution of this disease and habitat pressures ranging from the natural environment to aquaculture and rivers to marine environments, little variation has been observed in the R. salmoninarum genome. Here we use the coverage depth from genomic sequencing corroborated by real-time quantitative PCR to detect copy number variation (CNV) among the genes of R. salmoninarum. CNV was primarily limited to the known dominant virulence factors msa and p22. Among 68 isolates representing the UK, Norway and North America, the msa gene ranged from two to five identical copies and the p22 gene ranged from one to five copies. CNV for these two genes co-occurred, suggesting they may be functionally linked. Isolates carrying CNV were phylogenetically restricted and originated predominantly from sites in North America, rather than the UK or Norway. Although both phylogenetic relationship and geographical origin were found to correlate with CNV status, geographical origin was a much stronger predictor than phylogeny, suggesting a role for local selection pressures in the repeated emergence and maintenance of this trait.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000055
2016-04-29
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/4/mgen000055.html?itemId=/content/journal/mgen/10.1099/mgen.0.000055&mimeType=html&fmt=ahah

References

  1. Abreu-Goodger C., Merino E.. 2005; Ribex: a web server for locating riboswitches and other conserved bacterial regulatory elements. Nucleic Acids Res33:W690–W692 [CrossRef][PubMed]
    [Google Scholar]
  2. Andersson D. I., Hughes D.. 2009; Gene amplification and adaptive evolution in bacteria. Annu Rev Genet43:167–195 [CrossRef][PubMed]
    [Google Scholar]
  3. Brown L. L., Iwama G. K., Evelyn T. P. T.. 1996; The effect of early exposure of Coho salmon (Oncorhynchus kisutch) eggs to the p57 protein of Renibacterium salmoninarum on the development of immunity to the pathogen. Fish Shellfish Immunol6:149–165
    [Google Scholar]
  4. Brynildsrud O., Feil E. J., Bohlin J., Castillo-Ramirez S., Colquhoun D., McCarthy U., Matejusova I. M., Rhodes L. D., Wiens G. D., Verner-Jeffreys D. W.. 2014; Microevolution of Renibacterium salmoninarum: evidence for intercontinental dissemination associated with fish movements. ISME J8:746–756 [CrossRef][PubMed]
    [Google Scholar]
  5. Brynildsrud O., Snipen L.-G., Bohlin J.. 2015; CNOCpro: detection and quantification of CNVs in prokaryotic whole-genome sequencing data. Bioinforma Oxf Engl31:1708–1715 [CrossRef]
    [Google Scholar]
  6. Coady A. M., Murray A. L., Elliott D. G., Rhodes L. D.. 2006; Both msa genes in Renibacterium salmoninarum are needed for full virulence in bacterial kidney disease. Appl Environ Microbiol72:2672–2678 [CrossRef][PubMed]
    [Google Scholar]
  7. Conant G. C., Wolfe K. H.. 2008; Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet9:938–950 [CrossRef][PubMed]
    [Google Scholar]
  8. Diniz-Filho J. A., Soares T. N., Lima J. S., Dobrovolski R., Landeiro V. L., de Campos Telles M. P., Rangel T. F., Bini L. M.. 2013; Mantel test in population genetics. Genet Mol Biol36:475–485 [CrossRef][PubMed]
    [Google Scholar]
  9. Domenech P., Kolly G. S., Leon-Solis L., Fallow A., Reed M. B.. 2010; Massive gene duplication event among clinical isolates of the Mycobacterium tuberculosis W/Beijing Family. J Bacteriol192:4562–4570 [CrossRef][PubMed]
    [Google Scholar]
  10. Elliott K. T., Cuff L. E., Neidle E. L.. 2013; Copy number change: evolving views on gene amplification. Future Microbiol8:887–899 [CrossRef][PubMed]
    [Google Scholar]
  11. Evelyn T. P. T., Prosperi-Porta L., Ketcheson J. E.. 1986; Experimental intra-ovum infection of salmonid eggs with Renibacterium salmoninarum and vertical transmission of the pathogen with such eggs despite their treatment with erythromycin. Dis Aquat Organ1:197–202 [CrossRef]
    [Google Scholar]
  12. Fredriksen A., Bakken V.. 1994; Identification of Renibacterium salmoninarum surface proteins by radioiodination. FEMS Microbiol Lett121:297–301[PubMed]
    [Google Scholar]
  13. Frediksen Å., Enderesen C., Wergeland H. I.. 1997; Immunosuppressive effect of a low molecular weight surface protein from Renibacterium salmoninarumon on lymphocytes from Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol7:273–282 [CrossRef]
    [Google Scholar]
  14. Fryer J. L., Lannan C. N.. 1993; The history and current status of Renibacterium salmoninarum, the causative agent of bacterial kidney disease in Pacific salmon. Fish Res17:15–33 [CrossRef]
    [Google Scholar]
  15. Kondrashov F. A., Rogozin I. B., Wolf Y. I., Koonin E. V.. 2002; Selection in the evolution of gene duplications. Genome Biol3:[PubMed]
    [Google Scholar]
  16. Kondrashov F. A.. 2012; Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc R Soc B Biol Sci279:5048–5057 [CrossRef]
    [Google Scholar]
  17. Murray A. G., Munro L. A., Wallace I. S., Allan C. E. T., Peeler E. J., Thrush M. A.. 2012; Epidemiology of Renibacterium salmoninarum in Scotland and the potential for compartmentalized management of salmon and trout farming areas. Aquaculture324–325:1–13
    [Google Scholar]
  18. Naville M., Ghuillot-Gaudeffroy A., Marchais A., Gautheret D.. 2011; ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol8:11–13[PubMed]
    [Google Scholar]
  19. O'Farrell C. L., Strom M.. 1999; Differential expression of the virulence-associated protein p57 and characterization of its duplicated gene msa in virulent and attenuated strains of Renibacterium salmoninarum. Dis Aquat Organ38:115–123 [CrossRef][PubMed]
    [Google Scholar]
  20. Pascho R. J., Elliott D. G., Achord S.. 1993; Monitoring of the in-river migration of smolts from two groups of spring chinook salmon, Oncorhynchus tshawytscha (Walbaum), with different profiles of Renibacterium salmoninarum infection. Aquac Res24:163–169 [CrossRef]
    [Google Scholar]
  21. Rhodes L. D., Coady A. M., Strom M. S.. 2002; Expression of duplicate msa genes in the salmonid pathogen Renibacterium salmoninarum. Appl Environ Microbiol68:5480–5487[PubMed]
    [Google Scholar]
  22. Rhodes L. D., Coady A. M., Deinhard R. K.. 2004; Identification of a third msa gene in Renibacterium salmoninarum and the associated virulence phenotype. Appl Environ Microbiol70:6488–6494 [CrossRef][PubMed]
    [Google Scholar]
  23. Rhodes L. D., Rice C. A., Greene C. M., Teel D. J., Nance S. L., Moran P., Durkin C. A., Gezhegne S. B.. 2011; Nearshore ecosystem predictors of a bacterial infection in juvenile Chinook salmon. Mar Ecol Prog Ser432:161–172 [CrossRef]
    [Google Scholar]
  24. Riehle M. M., Bennett A. F., Long A. D.. 2001; Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci U S A98:525–530 [CrossRef][PubMed]
    [Google Scholar]
  25. Ronquist F., Huelsenbeck J. P.. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics19:1572–1574[PubMed]
    [Google Scholar]
  26. Sandell T. A., Teel D. J., Fisher J., Beckman B., Jacobson K. C.. 2015; Infections by Renibacterium salmoninarum and Nanophyetus salmincola Chapin are associated with reduced growth of juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), in the Northeast Pacific Ocean. J Fish Dis38:365–378 [CrossRef][PubMed]
    [Google Scholar]
  27. Senson P. R., Stevenson R. M.. 1999; Production of the 57 kDa major surface antigen by a non-agglutinating strain of the fish pathogen Renibacterium salmoninarum. Dis Aquat Organ38:23–31 [CrossRef][PubMed]
    [Google Scholar]
  28. Stranger B. E., Forrest M. S., Dunning M., Ingle C. E., Beazley C., Thorne N., Redon R., Bird C. P., de Grassi A., other authors. 2007; Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science315:848–853 [CrossRef][PubMed]
    [Google Scholar]
  29. Turaga P., Wiens G., Kaattari S.. 1987; Bacterial kidney disease: the potential role of soluble protein antigen(s). J Fish Biol31:191–194 [CrossRef]
    [Google Scholar]
  30. Wiens G. D., Kaattari S. L.. 1991; Monoclonal antibody characterization of a leukoagglutinin produced by Renibacterium salmoninarum. Infect Immun59:631–637[PubMed]
    [Google Scholar]
  31. Wiens G. D., Chien M. S., Winton J. R., Kaattari S. L.. 1999; Antigenic and functional characterization of p57 produced by Renibacterium salmoninarum. Dis Aquat Organ37:43–52 [CrossRef][PubMed]
    [Google Scholar]
  32. Wiens G. D., Dale O. B.. 2008; Renibacterium salmoninarum p57 antigenic variation is restricted in geographic distribution and correlated with genomic markers. Dis Aquat Organ83:123–131 [CrossRef]
    [Google Scholar]
  33. Wiens G. D., Rockey D. D., Wu Z., Chang J., Levy R., Crane S., Chen D. S., Capri G. R., Burnett J. R., other authors. 2008; Genome sequence of the fish pathogen Renibacterium salmoninarum suggests reductive evolution away from an environmental Arthrobacter ancestor. J Bacteriol190:6970–6982 [CrossRef][PubMed]
    [Google Scholar]
  34. Wood P. A., Kaattari S. L.. 1996; Enhanced immunogenicity of Renibacterium salmoninarum in Chinook salmon after removal of the bacterial cell surface-associated 57 kDa protein. Dis Aquat Organ25:71–79 [CrossRef]
    [Google Scholar]
  35. Brynildsrud, O., Feil, E. J., Bohlin, J., Castillo-Ramirez, S., Colquhoun, D., McCarthy, U., Matejusova, I. M., Rhodes, L. D. & Wiens, G. D. (2014). NCBI Sequence Read Archive. http://trace.ncbi.nlm.nih.gov/Traces/study/?acc=ERP003780.
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000055
Loading
/content/journal/mgen/10.1099/mgen.0.000055
Loading

Data & Media loading...

Supplementary Data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error