1887

Abstract

The majority of Acinetobacter baumannii isolates that are multiply, extensively and pan-antibiotic resistant belong to two globally disseminated clones, GC1 and GC2, that were first noticed in the 1970s. Here, we investigated microevolution and phylodynamics within GC1 via analysis of 45 whole-genome sequences, including 23 sequenced for this study. The most recent common ancestor of GC1 arose around 1960 and later diverged into two phylogenetically distinct lineages. In the 1970s, the main lineage acquired the AbaR resistance island, conferring resistance to older antibiotics, via a horizontal gene transfer event. We estimate a mutation rate of ∼5 SNPs genome year and detected extensive recombination within GC1 genomes, introducing nucleotide diversity into the population at >20 times the substitution rate (the ratio of SNPs introduced by recombination compared with mutation was 22). The recombination events were non-randomly distributed in the genome and created significant diversity within loci encoding outer surface molecules (including the capsular polysaccharide, the outer core lipooligosaccharide and the outer membrane protein CarO), and spread antimicrobial resistance-conferring mutations affecting the gyrA and parC genes and insertion sequence insertions activating the ampC gene. Both GC1 lineages accumulated resistance to newer antibiotics through various genetic mechanisms, including the acquisition of plasmids and transposons or mutations in chromosomal genes. Our data show that GC1 has diversified into multiple successful extensively antibiotic-resistant subclones that differ in their surface structures. This has important implications for all avenues of control, including epidemiological tracking, antimicrobial therapy and vaccination.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000052
2016-02-23
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/2/mgen000052.html?itemId=/content/journal/mgen/10.1099/mgen.0.000052&mimeType=html&fmt=ahah

References

  1. Adams M. D, Goglin K., Molyneaux N., Hujer K. M, Lavender H., Jamison J. J, MacDonald I. J, Martin K. M, Russo T., other authors. 2008; Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii . J Bacteriol190:8053–8064 [CrossRef][PubMed]
    [Google Scholar]
  2. Adams M. D, Chan E. R, Molyneaux N. D, Bonomo R. A. 2010; Genomewide analysis of divergence of antibiotic resistance determinants in closely related isolates of Acinetobacter baumannii . Antimicrob Agents Chemother54:3569–3577 [CrossRef][PubMed]
    [Google Scholar]
  3. Adiba S., Nizak C., van Baalen M., Denamur E., Depaulis F.. 2010; From grazing resistance to pathogenesis: the coincidental evolution of virulence factors. PLoS One5:e11882 [CrossRef][PubMed]
    [Google Scholar]
  4. Ahmad T. A, El-Sayed L. H, Haroun M., Hussein A. A, El Ashry S. H. 2012; Development of immunization trials against Klebsiella pneumoniae . Vaccine30:2411–2420 [CrossRef][PubMed]
    [Google Scholar]
  5. Alqasim A., Scheutz F., Zong Z., McNally A.. 2014; Comparative genome analysis identifies few traits unique to the Escherichia coli ST131 H30Rx clade and extensive mosaicism at the capsule locus. BMC Genomics15:830 [CrossRef][PubMed]
    [Google Scholar]
  6. Antunes L. C, Visca P., Towner K. J. 2014; Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis71:292–301 [CrossRef][PubMed]
    [Google Scholar]
  7. Bergogne-Bérézin E., Towner K. J. 1996; Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev9:148–165[PubMed]
    [Google Scholar]
  8. CLSI 2012; Performance Standards for Antimicrobial Susceptibility Testing. 22nd Informational Supplement Wayne, PA: Clinical and Laboratory Standards Institute;
  9. Croucher N. J, Page A. J, Connor T. R, Delaney A. J, Keane J. A, Bentley S. D, Parkhill J., Harris S. R. 2014; Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res43:e15[PubMed][CrossRef]
    [Google Scholar]
  10. DeLeo F. R, Chen L., Porcella S. F, Martens C. A, Kobayashi S. D, Porter A. R, Chavda K. D, Jacobs M. R, Mathema B., other authors. 2014; Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae . Proc Natl Acad Sci U S A111:4988–4993 [CrossRef][PubMed]
    [Google Scholar]
  11. Devaud M., Kayser F. H, Bächi B.. 1982; Transposon-mediated multiple antibiotic resistance in Acinetobacter strains. Antimicrob Agents Chemother22:323–329 [CrossRef][PubMed]
    [Google Scholar]
  12. Diancourt L., Passet V., Nemec A., Dijkshoorn L., Brisse S.. 2010; The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One5:e10034 [CrossRef][PubMed]
    [Google Scholar]
  13. Dijkshoorn L., Aucken H., Gerner-Smidt P., Janssen P., Kaufmann M. E, Garaizar J., Ursing J., Pitt T. L. 1996; Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. J Clin Microbiol34:1519–1525[PubMed]
    [Google Scholar]
  14. Drummond A. J, Suchard M. A, Xie D., Rambaut A.. 2012; Bayesian phylogenetics with BEAUti and the beast 1.7. Mol Biol Evol29:1969–1973 [CrossRef][PubMed]
    [Google Scholar]
  15. Eijkelkamp B. A, Stroeher U. H, Hassan K. A, Paulsen I. T, Brown M. H. 2014; Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii . BMC Genomics15:1020 [CrossRef][PubMed]
    [Google Scholar]
  16. Fournier P. E, Vallenet D., Barbe V., Audic S., Ogata H., Poirel L., Richet H., Robert C., Mangenot S., other authors. 2006; Comparative genomics of multidrug resistance in Acinetobacter baumannii . PLoS Genet2:e7 [CrossRef][PubMed]
    [Google Scholar]
  17. Gaiarsa S., Comandatore F., Gaibani P., Corbella M., Dalla Valle C., Epis S., Scaltriti E., Carretto E., Farina C., other authors. 2015; Genomic epidemiology of Klebsiella pneumoniae in Italy and novel insights into the origin and global evolution of its resistance to carbapenem antibiotics. Antimicrob Agents Chemother59:389–396 [CrossRef][PubMed]
    [Google Scholar]
  18. Gallagher L. A, Ramage E., Weiss E. J, Radey M., Hayden H. S, Held K. G, Huse H. K, Zurawski D. V, Brittnacher M. J, Manoil C.. 2015; Resources for genetic and genomic analysis of emerging pathogen Acinetobacter baumannii . J Bacteriol197:2027–2035 [CrossRef][PubMed]
    [Google Scholar]
  19. García-Quintanilla M., Pulido M. R, López-Rojas R., Pachón J., McConnell M. J. 2013; Emerging therapies for multidrug resistant Acinetobacter baumannii . Trends Microbiol21:157–163 [CrossRef][PubMed]
    [Google Scholar]
  20. Geisinger E., Isberg R. R. 2015; Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii . PLoS Pathog11:e1004691 [CrossRef][PubMed]
    [Google Scholar]
  21. Hamidian M., Hall R. M. 2011; AbaR4 replaces AbaR3 in a carbapenem-resistant Acinetobacter baumannii isolate belonging to global clone 1 from an Australian hospital. J Antimicrob Chemother66:2484–2491 [CrossRef][PubMed]
    [Google Scholar]
  22. Hamidian M., Hall R. M. 2013; ISAba1 targets a specific position upstream of the intrinsic ampC gene of Acinetobacter baumannii leading to cephalosporin resistance. J Antimicrob Chemother68:2682–2683 [CrossRef][PubMed]
    [Google Scholar]
  23. Hamidian M., Hall R. M. 2014a; Resistance to third-generation cephalosporins in Acinetobacter baumannii due to horizontal transfer of a chromosomal segment containing ISAba1-ampC . J Antimicrob Chemother69:2865–2866 [CrossRef][PubMed]
    [Google Scholar]
  24. Hamidian M., Hall R. M. 2014b; Tn6168, a transposon carrying an ISAba1-activated ampC gene and conferring cephalosporin resistance in Acinetobacter baumannii . J Antimicrob Chemother69:77–80 [CrossRef][PubMed]
    [Google Scholar]
  25. Hamidian M., Nigro S. J, Hall R. M. 2012; Variants of the gentamicin and tobramycin resistance plasmid pRAY are widely distributed in Acinetobacter . J Antimicrob Chemother67:2833–2836 [CrossRef][PubMed]
    [Google Scholar]
  26. Hamidian M., Hancock D. P, Hall R. M. 2013; Horizontal transfer of an ISAba125-activated ampC gene between Acinetobacter baumannii strains leading to cephalosporin resistance. J Antimicrob Chemother68:244–245 [CrossRef][PubMed]
    [Google Scholar]
  27. Hamidian M., Holt K. E, Pickard D., Dougan G., Hall R. M. 2014a; A GC1 Acinetobacter baumannii isolate carrying AbaR3 and the aminoglycoside resistance transposon TnaphA6 in a conjugative plasmid. J Antimicrob Chemother69:955–958 [CrossRef][PubMed]
    [Google Scholar]
  28. Hamidian M., Kenyon J. J, Holt K. E, Pickard D., Hall R. M. 2014b; A conjugative plasmid carrying the carbapenem resistance gene bla OXA-23 in AbaR4 in an extensively resistant GC1 Acinetobacter baumannii isolate. J Antimicrob Chemother69:2625–2628 [CrossRef][PubMed]
    [Google Scholar]
  29. Hamidian M., Wynn M., Holt K. E, Pickard D., Dougan G., Hall R. M. 2014c; Identification of a marker for two lineages within the GC1 clone of Acinetobacter baumannii . J Antimicrob Chemother69:557–558 [CrossRef][PubMed]
    [Google Scholar]
  30. Hamidian M., Hawkey J., Holt K. E, Hall R. M. 2015; Genome sequence of Acinetobacter baumannii strain D36, an antibiotic resistant isolate from lineage 2 of global clone 1. Genome Announc3:e01478–e01e15 [CrossRef][PubMed]
    [Google Scholar]
  31. Hamouda A., Evans B. A, Towner K. J, Amyes S. G. 2010; Characterization of epidemiologically unrelated Acinetobacter baumannii isolates from four continents by use of multilocus sequence typing, pulsed-field gel electrophoresis, and sequence-based typing of bla OXA-51-like genes. J Clin Microbiol48:2476–2483 [CrossRef][PubMed]
    [Google Scholar]
  32. Harris S. R, Feil E. J, Holden M. T, Quail M. A, Nickerson E. K, Chantratita N., Gardete S., Tavares A., Day N., other authors. 2010; Evolution of MRSA during hospital transmission and intercontinental spread. Science327:469–474 [CrossRef][PubMed]
    [Google Scholar]
  33. Hawkey J., Hamidian M., Wick R. R, Edwards D. J, Billman-Jacobe H., Hall R. M, Holt K. E. 2015; ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genomics16:667 [CrossRef][PubMed]
    [Google Scholar]
  34. Holt K. E, Baker S., Weill F. X, Holmes E. C, Kitchen A., Yu J., Sangal V., Brown D. J, Coia J. E, other authors. 2012; Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet44:1056–1059 [CrossRef][PubMed]
    [Google Scholar]
  35. Holt K. E, Hamidian M., Kenyon J. J, Wynn M. T, Hawkey J., Pickard D., Hall R. M. 2015; Genome sequence of Acinetobacter baumannii strain A1, an early example of antibiotic-resistant global clone 1. Genome Announc3:e00032–e00e15 [CrossRef][PubMed]
    [Google Scholar]
  36. Hu D., Liu B., Dijkshoorn L., Wang L., Reeves P. R. 2013; Diversity in the major polysaccharide antigen of Acinetobacter baumannii assessed by DNA sequencing, and development of a molecular serotyping scheme. PLoS One8:e70329 [CrossRef][PubMed]
    [Google Scholar]
  37. Iguchi A., Iyoda S., Kikuchi T., Ogura Y., Katsura K., Ohnishi M., Hayashi T., Thomson N. R. 2015; A complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster. DNA Res22:101–107 [CrossRef][PubMed]
    [Google Scholar]
  38. Inouye M., Dashnow H., Raven L. A, Schultz M. B, Pope B. J, Tomita T., Zobel J., Holt K. E. 2014; srst2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med6:90 [CrossRef][PubMed]
    [Google Scholar]
  39. Kenyon J. J, Hall R. M. 2013; Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLoS One8:e62160 [CrossRef][PubMed]
    [Google Scholar]
  40. Kenyon J. J, Marzaioli A. M, Hall R. M, De Castro C.. 2014a; Structure of the K2 capsule associated with the KL2 gene cluster of Acinetobacter baumannii . Glycobiology24:554–563 [CrossRef][PubMed]
    [Google Scholar]
  41. Kenyon J. J, Nigro S. J, Hall R. M. 2014b; Variation in the OC locus of Acinetobacter baumannii genomes predicts extensive structural diversity in the lipooligosaccharide. PLoS One9:e107833 [CrossRef][PubMed]
    [Google Scholar]
  42. Kenyon J. J, Marzaioli A. M, De Castro C., Hall R. M. 2015; 5,7-Di-N-acetyl-acinetaminic acid: a novel non-2-ulosonic acid found in the capsule of an Acinetobacter baumannii isolate. Glycobiology25:644–654 [CrossRef][PubMed]
    [Google Scholar]
  43. Krizova L., Nemec A.. 2010; A 63 kb genomic resistance island found in a multidrug-resistant Acinetobacter baumannii isolate of European clone I from 1977. J Antimicrob Chemother65:1915–1918 [CrossRef][PubMed]
    [Google Scholar]
  44. Krizova L., Dijkshoorn L., Nemec A.. 2011; Diversity and evolution of AbaR genomic resistance islands in Acinetobacter baumannii strains of European clone I. Antimicrob Agents Chemother55:3201–3206 [CrossRef][PubMed]
    [Google Scholar]
  45. Langmead B., Salzberg S. L. 2012; Fast gapped-read alignment with Bowtie 2. Nat Methods9:357–359 [CrossRef][PubMed]
    [Google Scholar]
  46. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.. 1000 Genome Project Data Processing Subgroup 2009; The Sequence Alignment/Map format and SAMtools. Bioinformatics25:2078–2079 [CrossRef][PubMed]
    [Google Scholar]
  47. Nigro S., Hall R. M. 2015; Distribution of the bla OXA-23-containing transposons Tn2006 and Tn2008 in Australian carbapenem-resistant Acinetobacter baumannii isolates. J Antimicrob Chemother70:2409–2411 [CrossRef][PubMed]
    [Google Scholar]
  48. Nigro S. J, Hall R. M. 2016; Structure and context of Acinetobacter transposons carrying the oxa23 carbapenemase gene. J Antimicrob Chemother [Epub ahead of print] [CrossRef][PubMed]
    [Google Scholar]
  49. Nigro S. J, Post V., Hall R. M. 2011a; Aminoglycoside resistance in multiply antibiotic-resistant Acinetobacter baumannii belonging to global clone 2 from Australian hospitals. J Antimicrob Chemother66:1504–1509 [CrossRef][PubMed]
    [Google Scholar]
  50. Nigro S. J, Post V., Hall R. M. 2011b; The multiresistant Acinetobacter baumannii European clone I type strain RUH875 (A297) carries a genomic antibiotic resistance island AbaR21, plasmid pRAY and a cluster containing ISAba1-sul2-CR2-strA-strB . J Antimicrob Chemother66:1928–1930 [CrossRef][PubMed]
    [Google Scholar]
  51. Petty N. K, Ben Zakour N. L, Stanton-Cook M., Skippington E., Totsika M., Forde B. M, Phan M. D, Gomes Moriel D., Peters K. M, other authors. 2014; Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A111:5694–5699 [CrossRef][PubMed]
    [Google Scholar]
  52. Post V., Hall R. M. 2009; AbaR5, a large multiple-antibiotic resistance region found in Acinetobacter baumannii . Antimicrob Agents Chemother53:2667–2671 [CrossRef][PubMed]
    [Google Scholar]
  53. Post V., White P. A, Hall R. M. 2010; Evolution of AbaR-type genomic resistance islands in multiply antibiotic-resistant Acinetobacter baumannii . J Antimicrob Chemother65:1162–1170 [CrossRef][PubMed]
    [Google Scholar]
  54. Post V., Hamidian M., Hall R. M. 2012; Antibiotic-resistant Acinetobacter baumannii variants belonging to global clone 1. J Antimicrob Chemother67:1039–1040 [CrossRef][PubMed]
    [Google Scholar]
  55. Rice L. B. 2008; Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis197:1079–1081 [CrossRef][PubMed]
    [Google Scholar]
  56. Riley L. W. 2014; Pandemic lineages of extraintestinal pathogenic Escherichia coli . Clin Microbiol Infect20:380–390 [CrossRef][PubMed]
    [Google Scholar]
  57. Russo T. A, Beanan J. M, Olson R., MacDonald U., Cox A. D, St Michael F., Vinogradov E. V, Spellberg B., Luke-Marshall N. R, Campagnari A. A. 2013; The K1 capsular polysaccharide from Acinetobacter baumannii is a potential therapeutic target via passive immunization. Infect Immun81:915–922 [CrossRef][PubMed]
    [Google Scholar]
  58. Sahl J. W, Gillece J. D, Schupp J. M, Waddell V. G, Driebe E. M, Engelthaler D. M, Keim P.. 2013; Evolution of a pathogen: a comparative genomics analysis identifies a genetic pathway to pathogenesis in Acinetobacter . PLoS One8:e54287 [CrossRef][PubMed]
    [Google Scholar]
  59. Sahl J. W, Del Franco M., Pournaras S., Colman R. E, Karah N., Dijkshoorn L., Zarrilli R.. 2015; Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage. Sci Rep5:15188 [CrossRef][PubMed]
    [Google Scholar]
  60. Snitkin E. S, Zelazny A. M, Montero C. I, Stock F., Mijares L., Murray P. R, Segre J. A, Mullikin J., Blakesley R., other authors. 2011; Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii . Proc Natl Acad Sci U S A108:13758–13763 [CrossRef][PubMed]
    [Google Scholar]
  61. Thrane S. W, Taylor V. L, Freschi L., Kukavica-Ibrulj I., Boyle B., Laroche J., Pirnay J. P, Lévesque R. C, Lam J. S, Jelsbak L.. 2015; The widespread multidrug-resistant serotype O12 Pseudomonas aeruginosa clone emerged through concomitant horizontal transfer of serotype antigen and antibiotic resistance gene clusters. MBio6:e01396–e01e15 [CrossRef][PubMed]
    [Google Scholar]
  62. Touchon M., Cury J., Yoon E. J, Krizova L., Cerqueira G. C, Murphy C., Feldgarden M., Wortman J., Clermont D., other authors. 2014; The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol6:2866–2882 [CrossRef][PubMed]
    [Google Scholar]
  63. Vallenet D., Nordmann P., Barbe V., Poirel L., Mangenot S., Bataille E., Dossat C., Gas S., Kreimeyer A., other authors. 2008; Comparative analysis of Acinetobacters: three genomes for three lifestyles. PLoS One3:e1805 [CrossRef][PubMed]
    [Google Scholar]
  64. Wilson K.. 2001; Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol2.4:1–5
    [Google Scholar]
  65. Wright M. S, Haft D. H, Harkins D. M, Perez F., Hujer K. M, Bajaksouzian S., Benard M. F, Jacobs M. R, Bonomo R. A, Adams M. D. 2014; New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio5:e00963–e00e13 [CrossRef][PubMed]
    [Google Scholar]
  66. Wyres K. L, Gorrie C., Edwards D. J, Wertheim H. F, Hsu L. Y, Van Kinh N., Zadoks R., Baker S., Holt K. E. 2015; Extensive capsule locus variation and large-scale genomic recombination within the Klebsiella pneumoniae clonal group 258. Genome Biol Evol7:1267–1279 [CrossRef][PubMed]
    [Google Scholar]
  67. Zarrilli R., Pournaras S., Giannouli M., Tsakris A.. 2013; Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents41:11–19 [CrossRef][PubMed]
    [Google Scholar]
  68. Translational Genomics Research Institute (2012). GenBank accession number AMIV01 (Acinetobacter baumannii TG19582, whole-genome shotgun sequence).
  69. Adams, M. D., Goglin, K., Molyneaux, N., Hujer, K. M., Lavender, H., Jamison, J. J., McDonald, I. J., Martin, K. M., Russo, T. & other authors (2008). GenBank accession number CP001172.1 (Acinetobacter baumannii 307-0294, complete genome).
  70. Cerqueira, G., Feldgarden, M., Courvalin, P., Perichon, B., Grillot-Courvalin, C., Clermont, D., Rocha, E., Yoon, E.-J., Nemec, A. & other authors (2013). Short Read Archive accession numbers SRR654309 (Acinetobacter baumannii NIPH 527), SRR654194 (Acinetobacter baumannii NIPH 290) and SRR654201 (Acinetobacter baumannii ANC 4097).
  71. Harkins, D. M., Durkin, A. S., Beck, E., Fedorova, N. B., Kim, M., Onuska, J., Radune, D., DePew, J., Koroleva, G. I. & other authors (2012). Short Read Archive accession numbers SRR387244 (Acinetobacter baumannii OIFC074), SRR387323 (Acinetobacter baumannii Naval-21), SRR387319 (Acinetobacter baumannii Naval-83), SRR387315 (Acinetobacter baumannii Canada-BC1), SRR353953 (Acinetobacter baumannii Canada-BC5) and SRR387296 (Acinetobacter baumannii IS-58).
  72. Adams, M. D., Chan, E. R., Molyneaux, N. & Bonomo, R. A. (2010). GenBank accession numbers ADHA01 (Acinetobacter baumannii AB058, whole-genome shotgun sequence), ADGZ01 (Acinetobacter baumannii AB056, whole-genome shotgun sequence) and ADHB01 (Acinetobacter baumannii AB059, whole-genome shotgun sequence).
  73. Weinstock, G., Sodergren, E., Clifton, S., Fulton, L., Fulton, B., Courtney, L., Fronick, C., Harrison, M., Strong, C. & other authors (2009). Short Read Archive accession numbers SRR089343 (Acinetobacter baumannii 6013113) and SRR089344 (Acinetobacter baumannii 6013150).
  74. Sahl, J. W., Gillece, J. D., Schupp, J. M., Driebe, E. M. & Engenthaler, D. M. (2012). GenBank accession numbers AMHW01 (Acinetobacter baumannii 908-13, whole-genome shotgun sequence) and AMHZ (Acinetobacter baumannii 909-02-7, whole-genome shotgun sequence).
  75. Holt, K. E., Hamidian, M., Kenyon, J. J., Wynn, M. T., Hawkey, J., Pickard, D. & Hall, R. M. (2015). GenBank accession number CP010781 (Acinetobacter baumannii A1, complete genome).
  76. Yildimir, S. Y., Thompson, M. G., Harkins, D. M., Losada, L., Nierman, W., Zurawski, D. V. & Kirkup, B. C. (2008). GenBank accession number JHUI01 (Acinetobacter baumannii AB5075, whole-genome shotgun sequence).
  77. Vallenet, D., Nordmann, P., Barbe, V., Poirel, L., Mangenot, S., Bataille, E., Dossat, C., Gas, S., Kreimeyer, A. & other authors (2008). GenBank accession number CU459141 (Acinetobacter baumannii AYE, complete genome).
  78. Holt, K.E., Hamidian, M., Kenyon, J. J., Wynn, M. T., Hawkey, J., Pickard, D. & Hall, R. M. (2015). European Nucleotide Archive Project ERP001080 Acinetobacter baumannii strains A1, A297, A388, J1, D3208, J5, WM98, J7, J10, D2, D62, D30, A83, A92, A85, 6772166, RBH3, D15, D13, G7, D81, D78 and D36, and Illumina sequence reads and draft assemblies.
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000052
Loading
/content/journal/mgen/10.1099/mgen.0.000052
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error