1887

Abstract

The range of exoproteins and core exoproteome of 14 Staphylococcus aureus isolates representing major lineages associated with asymptomatic carriage and clinical disease in the UK was identified by MS proteomics using a combined database incorporating sequences derived from 39 S. aureus genomes. In all, 632 different proteins were identified and, of these, only 52 (8 %) were found in all 14 isolates whereas 144 (23 %) were found in just a single isolate. Comparison of the observed mass of each protein (based on migration by SDS-PAGE) with its predicted mass (based on amino acid sequence) suggested that 95 % of the proteins identified were not subject to any major post-translational modification. Migration of 5 % of the proteins was not as expected: 1 % of the proteins migrated at a mass greater than predicted, while 4 % appeared to have undergone proteolytic cleavage; these included SsaA2, Aur, SspP, Ebh as well as BlaR1, MecR1, FsH, OatA and LtaS. Intriguingly, a truncated SasG was produced by a single CC8 USA300-like strain. The analysis provided evidence of the marked heterogeneity in protein expression by S. aureus in broth, while yielding a core but narrow common exoproteome.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000049
2016-02-23
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/2/mgen000049.html?itemId=/content/journal/mgen/10.1099/mgen.0.000049&mimeType=html&fmt=ahah

References

  1. Akiyama Y.. 1999; Self-processing of FtsH and its implication for the cleavage specificity of this protease. Biochemistry38:11693–11699 [CrossRef][PubMed]
    [Google Scholar]
  2. Becher D., Hempel K., Sievers S., Zühlke D., Pané-Farré J., Otto A., Fuchs S., Albrecht D., Bernhardt J., other authors. 2009; A proteomic view of an important human pathogen – towards the quantification of the entire Staphylococcus aureus proteome. PLoS One4:e8176 [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardo K., Fleer S., Pakulat N., Krut O., Hünger F., Krönke M.. 2002; Identification of Staphylococcus aureus exotoxins by combined sodium dodecyl sulfate gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics2:740–746 [CrossRef][PubMed]
    [Google Scholar]
  4. Burlak C., Hammer C. H, Robinson M.-A., Whitney A. R, McGavin M. J, Kreiswirth B. N, Deleo F. R. 2007; Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cell Microbiol9:1172–1190 [CrossRef][PubMed]
    [Google Scholar]
  5. Conway J. F, Duda R. L, Cheng N., Hendrix R. W, Steven A. C. 1995; Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. J Mol Biol253:86–99 [CrossRef][PubMed]
    [Google Scholar]
  6. Corrigan R. M, Rigby D., Handley P., Foster T. J. 2007; The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology153:2435–2446 [CrossRef][PubMed]
    [Google Scholar]
  7. Diep B. A, Gill S. R, Chang R. F, Phan T. H, Chen J. H, Davidson M. G, Lin F., Lin J., Carleton H. A, other authors. 2006; Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet367:731–739 [CrossRef][PubMed]
    [Google Scholar]
  8. Downer R., Roche F., Park P. W, Mecham R. P, Foster T. J. 2002; The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J Biol Chem277:243–250 [CrossRef][PubMed]
    [Google Scholar]
  9. Duda R. L, Hempel J., Michel H., Shabanowitz J., Hunt D., Hendrix R. W. 1995; Structural transitions during bacteriophage HK97 head assembly. J Mol Biol247:618–635 [CrossRef][PubMed]
    [Google Scholar]
  10. Ebner P., Prax M., Nega M., Koch I., Dube L., Yu W., Rinker J., Popella P., Flötenmeyer M., Götz F.. 2015; Excretion of cytoplasmic proteins (ECP) in Staphylococcus aureus. Mol Microbiol97:775–789 [CrossRef][PubMed]
    [Google Scholar]
  11. Edwards R. J, Wrigley A., Bai Z., Bateman M., Russell H., Murray S., Lu H., Taylor G. W, Boobis A. R, Sriskandan S.. 2007; C-terminal antibodies (CTAbs): a simple and broadly applicable approach for the rapid generation of protein-specific antibodies with predefined specificity. Proteomics7:1364–1372 [CrossRef][PubMed]
    [Google Scholar]
  12. Foulston L., Elsholz A.K.W., DeFrancesco A. S, Losick R.. 2014; The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio5:e01667-14 [CrossRef][PubMed]
    [Google Scholar]
  13. Fuchs S., Pané-Farré J., Kohler C., Hecker M., Engelmann S.. 2007; Anaerobic gene expression in Staphylococcus aureus. J Bacteriol189:4275–4289 [CrossRef][PubMed]
    [Google Scholar]
  14. Gatlin C. L, Pieper R., Huang S.-T., Mongodin E., Gebregeorgis E., Parmar P. P, Clark D. J, Alami H., Papazisi L., other authors. 2006; Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus. Proteomics6:1530–1549 [CrossRef][PubMed]
    [Google Scholar]
  15. Geoghegan J. A, Corrigan R. M, Gruszka D. T, Speziale P., O'Gara J. P, Potts J. R, Foster T. J. 2010; Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol192:5663–5673 [CrossRef][PubMed]
    [Google Scholar]
  16. Glowalla E., Tosetti B., Krönke M., Krut O.. 2009; Proteomics-based identification of anchorless cell wall proteins as vaccine candidates against Staphylococcus aureus. Infect Immun77:2719–2729 [CrossRef][PubMed]
    [Google Scholar]
  17. Gründling A., Schneewind O.. 2007; Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci U S A104:8478–8483 [CrossRef][PubMed]
    [Google Scholar]
  18. Harmsen D., Claus H., Witte W., Rothgänger J., Claus H., Turnwald D., Vogel U.. 2003; Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol41:5442–5448 [CrossRef][PubMed]
    [Google Scholar]
  19. Henderson B., Martin A.. 2011; Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun79:3476–3491 [CrossRef][PubMed]
    [Google Scholar]
  20. Holmes A., Ganner M., McGuane S., Pitt T. L, Cookson B. D, Kearns A. M. 2005; Staphylococcus aureus isolates carrying Panton–Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. J Clin Microbiol43:2384–2390 [CrossRef][PubMed]
    [Google Scholar]
  21. Karnataki A., DeRocher A. E, Feagin J. E, Parsons M.. 2009; Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Mol Biochem Parasitol166:126–133 [CrossRef][PubMed]
    [Google Scholar]
  22. Kawano Y., Kawagishi M., Nakano M., Mase K., Yamashino T., Hasegawa T., Ohta M.. 2001; Proteolytic cleavage of staphylococcal exoproteins analyzed by two-dimensional gel electrophoresis. Microbiol Immunol45:285–290 [CrossRef][PubMed]
    [Google Scholar]
  23. Krzywda S., Brzozowski A. M, Verma C., Karata K., Ogura T., Wilkinson A. J. 2002; The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution. Structure10:1073–1083 [CrossRef][PubMed]
    [Google Scholar]
  24. Kuroda M., Ohta T., Uchiyama I., Baba T., Yuzawa H., Kobayashi I., Cui L., Oguchi A., Aoki K., other authors. 2001; Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet357:1225–1240 [CrossRef][PubMed]
    [Google Scholar]
  25. Kuroda M., Ito R., Tanaka Y., Yao M., Matoba K., Saito S., Tanaka I., Ohta T.. 2008; Staphylococcus aureus surface protein SasG contributes to intercellular autoaggregation of Staphylococcus aureus. Biochem Biophys Res Commun377:1102–1106 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee E. Y, Choi D. Y, Kim D. K, Kim J. W, Park J. O, Kim S., Kim S. H, Desiderio D. M, Kim Y. K, other authors. 2009; Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics9:5425–5436 [CrossRef][PubMed]
    [Google Scholar]
  27. Lindsay J. A, Moore C. E, Day N. P, Peacock S. J, Witney A. A, Stabler R. A, Husain S. E, Butcher P. D, Hinds J.. 2006; Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol188:669–676 [CrossRef][PubMed]
    [Google Scholar]
  28. Llarrull L. I, Toth M., Champion M. M, Mobashery S.. 2011; Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. J Biol Chem286:38148–38158 [CrossRef][PubMed]
    [Google Scholar]
  29. Michalik S., Liebeke M., Zühlke D., Lalk M., Bernhardt J., Gerth U., Hecker M.. 2009; Proteolysis during long-term glucose starvation in Staphylococcus aureus COL. Proteomics9:4468–4477 [CrossRef][PubMed]
    [Google Scholar]
  30. Milheiriço C., Oliveira D. C, de Lencastre H.. 2007; Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob Agents Chemother51:3374–3377 [CrossRef][PubMed]
    [Google Scholar]
  31. Nakakido M., Tanaka Y., Tsumoto K.. 2007; The N-terminal domain of elastin-binding protein of Staphylococcus aureus changes its secondary structure in a membrane-mimetic environment. J Biochem142:131–134 [CrossRef][PubMed]
    [Google Scholar]
  32. Nakano M., Kawano Y., Kawagishi M., Hasegawa T., Iinuma Y., Oht M.. 2002; Two-dimensional analysis of exoproteins of methicillin-resistant Staphylococcus aureus (MRSA) for possible epidemiological applications. Microbiol Immunol46:11–22 [CrossRef][PubMed]
    [Google Scholar]
  33. Nandakumar R., Nandakumar M. P, Marten M. R, Ross J. M. 2005; Proteome analysis of membrane and cell wall associated proteins from Staphylococcus aureus. J Proteome Res4:250–257 [CrossRef][PubMed]
    [Google Scholar]
  34. Nickerson N. N, Joag V., McGavin M. J. 2008; Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain. Mol Microbiol69:1530–1543 [CrossRef][PubMed]
    [Google Scholar]
  35. Park P. W, Roberts D. D, Grosso L. E, Parks W. C, Rosenbloom J., Abrams W. R, Mecham R. P. 1991; Binding of elastin to Staphylococcus aureus. J Biol Chem266:23399–23406[PubMed]
    [Google Scholar]
  36. Park P. W, Rosenbloom J., Abrams W. R, Rosenbloom J., Mecham R. P. 1996; Molecular cloning and expression of the gene for elastin-binding protein (ebpS) in Staphylococcus aureus. J Biol Chem271:15803–15809 [CrossRef][PubMed]
    [Google Scholar]
  37. Pocsfalvi G., Cacace G., Cuccurullo M., Serluca G., Sorrentino A., Schlosser G., Blaiotta G., Malorni A.. 2008; Proteomic analysis of exoproteins expressed by enterotoxigenic Staphylococcus aureus strains. Proteomics8:2462–2476 [CrossRef][PubMed]
    [Google Scholar]
  38. Powers M. E, Smith P. A, Roberts T. C, Fowler B. J, King C. C, Trauger S. A, Siuzdak G., Romesberg F. E. 2011; Type I signal peptidase and protein secretion in Staphylococcus epidermidis. J Bacteriol193:340–348 [CrossRef][PubMed]
    [Google Scholar]
  39. Ravipaty S., Reilly J. P. 2010; Comprehensive characterization of methicillin-resistant Staphylococcus aureus subsp. aureus COL secretome by two-dimensional liquid chromatography and mass spectrometry. Mol Cell Proteomics9:1898–1919 [CrossRef][PubMed]
    [Google Scholar]
  40. Roche F. M, Meehan M., Foster T. J. 2003; The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology149:2759–2767 [CrossRef][PubMed]
    [Google Scholar]
  41. Rogasch K., Rühmling V., Pané-Farré J., Höper D., Weinberg C., Fuchs S., Schmudde M., Bröker B. M, Wolz C., other authors. 2006; Influence of the two-component system SaeRS on global gene expression in two different Staphylococcus aureus strains. J Bacteriol188:7742–7758 [CrossRef][PubMed]
    [Google Scholar]
  42. Rudkin J. K, Edwards A. M, Bowden M. G, Brown E. L, Pozzi C., Waters E. M, Chan W. C, Williams P., O'Gara J. P, Massey R. C. 2012; Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant Staphylococcus aureus by interfering with the agr quorum sensing system. J Infect Dis205:798–806 [CrossRef][PubMed]
    [Google Scholar]
  43. Schallenberger M. A, Niessen S., Shao C., Fowler B. J, Romesberg F. E. 2012; Type I signal peptidase and protein secretion in Staphylococcus aureus. J Bacteriol194:2677–2686 [CrossRef][PubMed]
    [Google Scholar]
  44. Sibbald M.J.J.B., Ziebandt A. K, Engelmann S., Hecker M., de Jong A., Harmsen H.J.M., Raangs G. C, Stokroos I., Arends J. P, other authors. 2006; Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev70:755–788 [CrossRef][PubMed]
    [Google Scholar]
  45. Tjalsma H., Antelmann H., Jongbloed J.D.H., Braun P. G, Darmon E., Dorenbos R., Dubois J.-Y.F., Westers H., Zanen G., other authors. 2004; Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev68:207–233 [CrossRef][PubMed]
    [Google Scholar]
  46. Vandenbergh M. F, Verbrugh H. A. 1999; Carriage of Staphylococcus aureus: epidemiology and clinical relevance. J Lab Clin Med133:525–534 [CrossRef][PubMed]
    [Google Scholar]
  47. Vytvytska O., Nagy E., Blüggel M., Meyer H. E, Kurzbauer R., Huber L. A, Klade C. S. 2002; Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics2:580–590 [CrossRef][PubMed]
    [Google Scholar]
  48. Witney A. A, Marsden G. L, Holden M.T.G., Stabler R. A, Husain S. E, Vass J. K, Butcher P. D, Hinds J., Lindsay J. A. 2005; Design, validation, and application of a seven-strain Staphylococcus aureus PCR product microarray for comparative genomics. Appl Environ Microbiol71:7504–7514 [CrossRef][PubMed]
    [Google Scholar]
  49. Wörmann M. E, Reichmann N. T, Malone C. L, Horswill A. R, Gründling A.. 2011; Proteolytic cleavage inactivates the Staphylococcus aureus lipoteichoic acid synthase. J Bacteriol193:5279–5291 [CrossRef][PubMed]
    [Google Scholar]
  50. Yu N. Y, Wagner J. R, Laird M. R, Melli G., Rey S., Lo R., Dao P., Sahinalp S. C, Ester M., other authors. 2010; PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics26:1608–1615 [CrossRef][PubMed]
    [Google Scholar]
  51. Zhang H. Z, Hackbarth C. J, Chansky K. M, Chambers H. F. 2001; A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science291:1962–1965 [CrossRef][PubMed]
    [Google Scholar]
  52. Zhu Z., Boobis A. R, Edwards R. J. 2008; Identification of estrogen-responsive proteins in MCF-7 human breast cancer cells using label-free quantitative proteomics. Proteomics8:1987–2005 [CrossRef][PubMed]
    [Google Scholar]
  53. Ziebandt A. K, Weber H., Rudolph J., Schmid R., Höper D., Engelmann S., Hecker M.. 2001; Extracellular proteins of Staphylococcus aureus and the role of SarA and σB. Proteomics1:480–493 [CrossRef][PubMed]
    [Google Scholar]
  54. Ziebandt A.-K., Becher D., Ohlsen K., Hacker J., Hecker M., Engelmann S.. 2004; The influence of agr and σB in growth phase dependent regulation of virulence factors in Staphylococcus aureus. Proteomics4:3034–3047 [CrossRef][PubMed]
    [Google Scholar]
  55. Ziebandt A.-K., Kusch H., Degner M., Jaglitz S., Sibbald M.J.J.B., Arends J. P, Chlebowicz M. A, Albrecht D., Pantucek R., other authors. 2010; Proteomics uncovers extreme heterogeneity in the Staphylococcus aureus exoproteome due to genomic plasticity and variant gene regulation. Proteomics10:1634–1644 [CrossRef][PubMed]
    [Google Scholar]
  56. European Nucleotide Archive. http://www.ebi.ac.uk/ena. Accession number PRJEB12240, secondary study accession number ERP013694 (2016)
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000049
Loading
/content/journal/mgen/10.1099/mgen.0.000049
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error