1887

Abstract

The range of exoproteins and core exoproteome of 14 Staphylococcus aureus isolates representing major lineages associated with asymptomatic carriage and clinical disease in the UK was identified by MS proteomics using a combined database incorporating sequences derived from 39 S. aureus genomes. In all, 632 different proteins were identified and, of these, only 52 (8 %) were found in all 14 isolates whereas 144 (23 %) were found in just a single isolate. Comparison of the observed mass of each protein (based on migration by SDS-PAGE) with its predicted mass (based on amino acid sequence) suggested that 95 % of the proteins identified were not subject to any major post-translational modification. Migration of 5 % of the proteins was not as expected: 1 % of the proteins migrated at a mass greater than predicted, while 4 % appeared to have undergone proteolytic cleavage; these included SsaA2, Aur, SspP, Ebh as well as BlaR1, MecR1, FsH, OatA and LtaS. Intriguingly, a truncated SasG was produced by a single CC8 USA300-like strain. The analysis provided evidence of the marked heterogeneity in protein expression by S. aureus in broth, while yielding a core but narrow common exoproteome.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000049
2016-02-23
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/2/mgen000049.html?itemId=/content/journal/mgen/10.1099/mgen.0.000049&mimeType=html&fmt=ahah

References

  1. Akiyama Y. 1999; Self-processing of FtsH and its implication for the cleavage specificity of this protease. Biochemistry 38:11693–11699 [View Article][PubMed]
    [Google Scholar]
  2. Becher D., Hempel K., Sievers S., Zühlke D., Pané-Farré J., Otto A., Fuchs S., Albrecht D., Bernhardt J., other authors. 2009; A proteomic view of an important human pathogen – towards the quantification of the entire Staphylococcus aureus proteome. PLoS One 4:e8176 [View Article][PubMed]
    [Google Scholar]
  3. Bernardo K., Fleer S., Pakulat N., Krut O., Hünger F., Krönke M. 2002; Identification of Staphylococcus aureus exotoxins by combined sodium dodecyl sulfate gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2:740–746 [View Article][PubMed]
    [Google Scholar]
  4. Burlak C., Hammer C. H, Robinson M.-A., Whitney A. R, McGavin M. J, Kreiswirth B. N, Deleo F. R. 2007; Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cell Microbiol 9:1172–1190 [View Article][PubMed]
    [Google Scholar]
  5. Conway J. F, Duda R. L, Cheng N., Hendrix R. W, Steven A. C. 1995; Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. J Mol Biol 253:86–99 [View Article][PubMed]
    [Google Scholar]
  6. Corrigan R. M, Rigby D., Handley P., Foster T. J. 2007; The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153:2435–2446 [View Article][PubMed]
    [Google Scholar]
  7. Diep B. A, Gill S. R, Chang R. F, Phan T. H, Chen J. H, Davidson M. G, Lin F., Lin J., Carleton H. A, other authors. 2006; Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus . Lancet 367:731–739 [View Article][PubMed]
    [Google Scholar]
  8. Downer R., Roche F., Park P. W, Mecham R. P, Foster T. J. 2002; The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J Biol Chem 277:243–250 [View Article][PubMed]
    [Google Scholar]
  9. Duda R. L, Hempel J., Michel H., Shabanowitz J., Hunt D., Hendrix R. W. 1995; Structural transitions during bacteriophage HK97 head assembly. J Mol Biol 247:618–635 [View Article][PubMed]
    [Google Scholar]
  10. Ebner P., Prax M., Nega M., Koch I., Dube L., Yu W., Rinker J., Popella P., Flötenmeyer M., Götz F. 2015; Excretion of cytoplasmic proteins (ECP) in Staphylococcus aureus . Mol Microbiol 97:775–789 [View Article][PubMed]
    [Google Scholar]
  11. Edwards R. J, Wrigley A., Bai Z., Bateman M., Russell H., Murray S., Lu H., Taylor G. W, Boobis A. R, Sriskandan S. 2007; C-terminal antibodies (CTAbs): a simple and broadly applicable approach for the rapid generation of protein-specific antibodies with predefined specificity. Proteomics 7:1364–1372 [View Article][PubMed]
    [Google Scholar]
  12. Foulston L., Elsholz A.K.W., DeFrancesco A. S, Losick R. 2014; The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio 5:e01667-14 [View Article][PubMed]
    [Google Scholar]
  13. Fuchs S., Pané-Farré J., Kohler C., Hecker M., Engelmann S. 2007; Anaerobic gene expression in Staphylococcus aureus . J Bacteriol 189:4275–4289 [View Article][PubMed]
    [Google Scholar]
  14. Gatlin C. L, Pieper R., Huang S.-T., Mongodin E., Gebregeorgis E., Parmar P. P, Clark D. J, Alami H., Papazisi L., other authors. 2006; Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus . Proteomics 6:1530–1549 [View Article][PubMed]
    [Google Scholar]
  15. Geoghegan J. A, Corrigan R. M, Gruszka D. T, Speziale P., O'Gara J. P, Potts J. R, Foster T. J. 2010; Role of surface protein SasG in biofilm formation by Staphylococcus aureus . J Bacteriol 192:5663–5673 [View Article][PubMed]
    [Google Scholar]
  16. Glowalla E., Tosetti B., Krönke M., Krut O. 2009; Proteomics-based identification of anchorless cell wall proteins as vaccine candidates against Staphylococcus aureus . Infect Immun 77:2719–2729 [View Article][PubMed]
    [Google Scholar]
  17. Gründling A., Schneewind O. 2007; Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus . Proc Natl Acad Sci U S A 104:8478–8483 [View Article][PubMed]
    [Google Scholar]
  18. Harmsen D., Claus H., Witte W., Rothgänger J., Claus H., Turnwald D., Vogel U. 2003; Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442–5448 [View Article][PubMed]
    [Google Scholar]
  19. Henderson B., Martin A. 2011; Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79:3476–3491 [View Article][PubMed]
    [Google Scholar]
  20. Holmes A., Ganner M., McGuane S., Pitt T. L, Cookson B. D, Kearns A. M. 2005; Staphylococcus aureus isolates carrying Panton–Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. J Clin Microbiol 43:2384–2390 [View Article][PubMed]
    [Google Scholar]
  21. Karnataki A., DeRocher A. E, Feagin J. E, Parsons M. 2009; Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Mol Biochem Parasitol 166:126–133 [View Article][PubMed]
    [Google Scholar]
  22. Kawano Y., Kawagishi M., Nakano M., Mase K., Yamashino T., Hasegawa T., Ohta M. 2001; Proteolytic cleavage of staphylococcal exoproteins analyzed by two-dimensional gel electrophoresis. Microbiol Immunol 45:285–290 [View Article][PubMed]
    [Google Scholar]
  23. Krzywda S., Brzozowski A. M, Verma C., Karata K., Ogura T., Wilkinson A. J. 2002; The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution. Structure 10:1073–1083 [View Article][PubMed]
    [Google Scholar]
  24. Kuroda M., Ohta T., Uchiyama I., Baba T., Yuzawa H., Kobayashi I., Cui L., Oguchi A., Aoki K., other authors. 2001; Whole genome sequencing of meticillin-resistant Staphylococcus aureus . Lancet 357:1225–1240 [View Article][PubMed]
    [Google Scholar]
  25. Kuroda M., Ito R., Tanaka Y., Yao M., Matoba K., Saito S., Tanaka I., Ohta T. 2008; Staphylococcus aureus surface protein SasG contributes to intercellular autoaggregation of Staphylococcus aureus . Biochem Biophys Res Commun 377:1102–1106 [View Article][PubMed]
    [Google Scholar]
  26. Lee E. Y, Choi D. Y, Kim D. K, Kim J. W, Park J. O, Kim S., Kim S. H, Desiderio D. M, Kim Y. K, other authors. 2009; Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9:5425–5436 [View Article][PubMed]
    [Google Scholar]
  27. Lindsay J. A, Moore C. E, Day N. P, Peacock S. J, Witney A. A, Stabler R. A, Husain S. E, Butcher P. D, Hinds J. 2006; Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188:669–676 [View Article][PubMed]
    [Google Scholar]
  28. Llarrull L. I, Toth M., Champion M. M, Mobashery S. 2011; Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. J Biol Chem 286:38148–38158 [View Article][PubMed]
    [Google Scholar]
  29. Michalik S., Liebeke M., Zühlke D., Lalk M., Bernhardt J., Gerth U., Hecker M. 2009; Proteolysis during long-term glucose starvation in Staphylococcus aureus COL. Proteomics 9:4468–4477 [View Article][PubMed]
    [Google Scholar]
  30. Milheiriço C., Oliveira D. C, de Lencastre H. 2007; Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus . Antimicrob Agents Chemother 51:3374–3377 [View Article][PubMed]
    [Google Scholar]
  31. Nakakido M., Tanaka Y., Tsumoto K. 2007; The N-terminal domain of elastin-binding protein of Staphylococcus aureus changes its secondary structure in a membrane-mimetic environment. J Biochem 142:131–134 [View Article][PubMed]
    [Google Scholar]
  32. Nakano M., Kawano Y., Kawagishi M., Hasegawa T., Iinuma Y., Oht M. 2002; Two-dimensional analysis of exoproteins of methicillin-resistant Staphylococcus aureus (MRSA) for possible epidemiological applications. Microbiol Immunol 46:11–22 [View Article][PubMed]
    [Google Scholar]
  33. Nandakumar R., Nandakumar M. P, Marten M. R, Ross J. M. 2005; Proteome analysis of membrane and cell wall associated proteins from Staphylococcus aureus . J Proteome Res 4:250–257 [View Article][PubMed]
    [Google Scholar]
  34. Nickerson N. N, Joag V., McGavin M. J. 2008; Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain. Mol Microbiol 69:1530–1543 [View Article][PubMed]
    [Google Scholar]
  35. Park P. W, Roberts D. D, Grosso L. E, Parks W. C, Rosenbloom J., Abrams W. R, Mecham R. P. 1991; Binding of elastin to Staphylococcus aureus. J Biol Chem 266:23399–23406[PubMed]
    [Google Scholar]
  36. Park P. W, Rosenbloom J., Abrams W. R, Rosenbloom J., Mecham R. P. 1996; Molecular cloning and expression of the gene for elastin-binding protein (ebpS) in Staphylococcus aureus . J Biol Chem 271:15803–15809 [View Article][PubMed]
    [Google Scholar]
  37. Pocsfalvi G., Cacace G., Cuccurullo M., Serluca G., Sorrentino A., Schlosser G., Blaiotta G., Malorni A. 2008; Proteomic analysis of exoproteins expressed by enterotoxigenic Staphylococcus aureus strains. Proteomics 8:2462–2476 [View Article][PubMed]
    [Google Scholar]
  38. Powers M. E, Smith P. A, Roberts T. C, Fowler B. J, King C. C, Trauger S. A, Siuzdak G., Romesberg F. E. 2011; Type I signal peptidase and protein secretion in Staphylococcus epidermidis . J Bacteriol 193:340–348 [View Article][PubMed]
    [Google Scholar]
  39. Ravipaty S., Reilly J. P. 2010; Comprehensive characterization of methicillin-resistant Staphylococcus aureus subsp. aureus COL secretome by two-dimensional liquid chromatography and mass spectrometry. Mol Cell Proteomics 9:1898–1919 [View Article][PubMed]
    [Google Scholar]
  40. Roche F. M, Meehan M., Foster T. J. 2003; The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149:2759–2767 [View Article][PubMed]
    [Google Scholar]
  41. Rogasch K., Rühmling V., Pané-Farré J., Höper D., Weinberg C., Fuchs S., Schmudde M., Bröker B. M, Wolz C., other authors. 2006; Influence of the two-component system SaeRS on global gene expression in two different Staphylococcus aureus strains. J Bacteriol 188:7742–7758 [View Article][PubMed]
    [Google Scholar]
  42. Rudkin J. K, Edwards A. M, Bowden M. G, Brown E. L, Pozzi C., Waters E. M, Chan W. C, Williams P., O'Gara J. P, Massey R. C. 2012; Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant Staphylococcus aureus by interfering with the agr quorum sensing system. J Infect Dis 205:798–806 [View Article][PubMed]
    [Google Scholar]
  43. Schallenberger M. A, Niessen S., Shao C., Fowler B. J, Romesberg F. E. 2012; Type I signal peptidase and protein secretion in Staphylococcus aureus . J Bacteriol 194:2677–2686 [View Article][PubMed]
    [Google Scholar]
  44. Sibbald M.J.J.B., Ziebandt A. K, Engelmann S., Hecker M., de Jong A., Harmsen H.J.M., Raangs G. C, Stokroos I., Arends J. P, other authors. 2006; Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev 70:755–788 [View Article][PubMed]
    [Google Scholar]
  45. Tjalsma H., Antelmann H., Jongbloed J.D.H., Braun P. G, Darmon E., Dorenbos R., Dubois J.-Y.F., Westers H., Zanen G., other authors. 2004; Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68:207–233 [View Article][PubMed]
    [Google Scholar]
  46. Vandenbergh M. F, Verbrugh H. A. 1999; Carriage of Staphylococcus aureus: epidemiology and clinical relevance. J Lab Clin Med 133:525–534 [View Article][PubMed]
    [Google Scholar]
  47. Vytvytska O., Nagy E., Blüggel M., Meyer H. E, Kurzbauer R., Huber L. A, Klade C. S. 2002; Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics 2:580–590 [View Article][PubMed]
    [Google Scholar]
  48. Witney A. A, Marsden G. L, Holden M.T.G., Stabler R. A, Husain S. E, Vass J. K, Butcher P. D, Hinds J., Lindsay J. A. 2005; Design, validation, and application of a seven-strain Staphylococcus aureus PCR product microarray for comparative genomics. Appl Environ Microbiol 71:7504–7514 [View Article][PubMed]
    [Google Scholar]
  49. Wörmann M. E, Reichmann N. T, Malone C. L, Horswill A. R, Gründling A. 2011; Proteolytic cleavage inactivates the Staphylococcus aureus lipoteichoic acid synthase. J Bacteriol 193:5279–5291 [View Article][PubMed]
    [Google Scholar]
  50. Yu N. Y, Wagner J. R, Laird M. R, Melli G., Rey S., Lo R., Dao P., Sahinalp S. C, Ester M., other authors. 2010; PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615 [View Article][PubMed]
    [Google Scholar]
  51. Zhang H. Z, Hackbarth C. J, Chansky K. M, Chambers H. F. 2001; A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science 291:1962–1965 [View Article][PubMed]
    [Google Scholar]
  52. Zhu Z., Boobis A. R, Edwards R. J. 2008; Identification of estrogen-responsive proteins in MCF-7 human breast cancer cells using label-free quantitative proteomics. Proteomics 8:1987–2005 [View Article][PubMed]
    [Google Scholar]
  53. Ziebandt A. K, Weber H., Rudolph J., Schmid R., Höper D., Engelmann S., Hecker M. 2001; Extracellular proteins of Staphylococcus aureus and the role of SarA and σB . Proteomics 1:480–493 [View Article][PubMed]
    [Google Scholar]
  54. Ziebandt A.-K., Becher D., Ohlsen K., Hacker J., Hecker M., Engelmann S. 2004; The influence of agr and σB in growth phase dependent regulation of virulence factors in Staphylococcus aureus . Proteomics 4:3034–3047 [View Article][PubMed]
    [Google Scholar]
  55. Ziebandt A.-K., Kusch H., Degner M., Jaglitz S., Sibbald M.J.J.B., Arends J. P, Chlebowicz M. A, Albrecht D., Pantucek R., other authors. 2010; Proteomics uncovers extreme heterogeneity in the Staphylococcus aureus exoproteome due to genomic plasticity and variant gene regulation. Proteomics 10:1634–1644 [View Article][PubMed]
    [Google Scholar]
  56. European Nucleotide Archive. http://www.ebi.ac.uk/ena. Accession number PRJEB12240, secondary study accession number ERP013694 (2016)
/content/journal/mgen/10.1099/mgen.0.000049
Loading
/content/journal/mgen/10.1099/mgen.0.000049
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error