1887

Abstract

The MocR-subfamily transcription factors (MocR-TFs) characterized by the GntR-family DNA-binding domain and aminotransferase-like sensory domain are broadly distributed among certain lineages of Bacteria. Characterized MocR-TFs bind pyridoxal 5′-phosphate (PLP) and control transcription of genes involved in PLP, gamma aminobutyric acid (GABA) and taurine metabolism via binding specific DNA operator sites. To identify putative target genes and DNA binding motifs of MocR-TFs, we performed comparative genomics analysis of over 250 bacterial genomes. The reconstructed regulons for 825 MocR-TFs comprise structural genes from over 200 protein families involved in diverse biological processes. Using the genome context and metabolic subsystem analysis we tentatively assigned functional roles for 38 out of 86 orthologous groups of studied regulators. Most of these MocR-TF regulons are involved in PLP metabolism, as well as utilization of GABA, taurine and ectoine. The remaining studied MocR-TF regulators presumably control genes encoding enzymes involved in reduction/oxidation processes, various transporters and PLP-dependent enzymes, for example aminotransferases. Predicted DNA binding motifs of MocR-TFs are generally similar in each orthologous group and are characterized by two to four repeated sequences. Identified motifs were classified according to their structures. Motifs with direct and/or inverted repeat symmetry constitute the majority of inferred DNA motifs, suggesting preferable TF dimerization in head-to-tail or head-to-head configuration. The obtained genomic collection of in silico reconstructed MocR-TF motifs and regulons in Bacteria provides a basis for future experimental characterization of molecular mechanisms for various regulators in this family.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000047
2016-01-18
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/1/mgen000047.html?itemId=/content/journal/mgen/10.1099/mgen.0.000047&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Belitsky B. R.. 2004; Bacillus subtilis GabR, a protein with DNA-binding and aminotransferase domains, is a PLP-dependent transcriptional regulator. J Mol Biol340:655–664 [CrossRef][PubMed]
    [Google Scholar]
  3. Belitsky B. R.. 2014; Role of PdxR in the activation of vitamin B6 biosynthesis in Listeria monocytogenes. Mol Microbiol92:1113–1128 [CrossRef][PubMed]
    [Google Scholar]
  4. Belitsky B. R., Sonenshein A. L.. 2002; GabR, a member of a novel protein family, regulates the utilization of gamma-aminobutyrate in Bacillus subtilis. Mol Microbiol45:569–583 [CrossRef][PubMed]
    [Google Scholar]
  5. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L.. 1999; GenBank. Nucleic Acids Res27:12–17 [CrossRef][PubMed]
    [Google Scholar]
  6. Bilski P., Li M. Y., Ehrenshaft M., Daub M. E., Chignell C. F.. 2000; Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol71:129–134 [CrossRef][PubMed]
    [Google Scholar]
  7. Blankenfeldt W., Kuzin A. P., Skarina T., Korniyenko Y., Tong L., Bayer P., Janning P., Thomashow L. S., Mavrodi D. V.. 2004; Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens. Proc Natl Acad Sci U S A101:16431–16436 [CrossRef][PubMed]
    [Google Scholar]
  8. Bramucci E., Milano T., Pascarella S.. 2011; Genomic distribution and heterogeneity of MocR-like transcriptional factors containing a domain belonging to the superfamily of the pyridoxal-5′-phosphate dependent enzymes of fold type I. Biochem Biophys Res Commun415:88–93 [CrossRef][PubMed]
    [Google Scholar]
  9. Cha H. J., Jeong J. H., Rojviriya C., Kim Y. G.. 2014; Structure of putrescine aminotransferase from Escherichia coli provides insights into the substrate specificity among class III aminotransferases. PLoS One9:e113212 [CrossRef][PubMed]
    [Google Scholar]
  10. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.. 2004; WebLogo: a sequence logo generator. Genome Res14:1188–1190 [CrossRef][PubMed]
    [Google Scholar]
  11. Dehal P. S., Joachimiak M. P., Price M. N., Bates J. T., Baumohl J. K., Chivian D., Friedland G. D., Huang K. H., Keller K., other authors. 2010; MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res38:(Database)D396–D400 [CrossRef][PubMed]
    [Google Scholar]
  12. Denger K., Ruff J., Schleheck D., Cook A. M.. 2004; Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. Microbiology150:1859–1867 [CrossRef][PubMed]
    [Google Scholar]
  13. Denger K., Smits T. H., Cook A. M.. 2006; Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides 2.4.1. Microbiology152:3197–3206 [CrossRef][PubMed]
    [Google Scholar]
  14. Dhakal R., Bajpai V. K., Baek K. H.. 2012; Production of GABA (γ-Aminobutyric acid) by microorganisms: a review. Braz J Microbiol43:1230–1241 [CrossRef][PubMed]
    [Google Scholar]
  15. di Salvo M. L., Safo M. K., Musayev F. N., Bossa F., Schirch V.. 2003; Structure and mechanism of Escherichia coli pyridoxine 5′-phosphate oxidase. Biochim Biophys Acta1647:76–82 [CrossRef][PubMed]
    [Google Scholar]
  16. Edayathumangalam R., Wu R., Garcia R., Wang Y., Wang W., Kreinbring C. A., Bach A., Liao J., Stone T. A., other authors. 2013; Crystal structure of Bacillus subtilis GabR, an autorepressor and transcriptional activator of gabT. Proc Natl Acad Sci U S A110:17820–17825 [CrossRef][PubMed]
    [Google Scholar]
  17. Edgar R. C.. 2004; muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics5:113 [CrossRef][PubMed]
    [Google Scholar]
  18. El Qaidi S., Yang J., Zhang J. R., Metzger D. W., Bai G.. 2013; The vitamin B6 biosynthesis pathway in Streptococcus pneumoniae is controlled by pyridoxal 5′-phosphate and the transcription factor PdxR and has an impact on ear infection. J Bacteriol195:2187–2196 [CrossRef][PubMed]
    [Google Scholar]
  19. Felsenstein J.. 1996; Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol266:418–427 [CrossRef][PubMed]
    [Google Scholar]
  20. Felux A. K., Denger K., Weiss M., Cook A. M., Schleheck D.. 2013; Paracoccus denitrificans PD1222 utilizes hypotaurine via transamination followed by spontaneous desulfination to yield acetaldehyde and, finally, acetate for growth. J Bacteriol195:2921–2930 [CrossRef][PubMed]
    [Google Scholar]
  21. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L., other authors. 2014; Pfam: the protein families database. Nucleic Acids Res42:(D1)D222–D230 [CrossRef][PubMed]
    [Google Scholar]
  22. Flynn J. M., Downs D. M.. 2013; In the absence of RidA, endogenous 2-aminoacrylate inactivates alanine racemases by modifying the pyridoxal 5′-phosphate cofactor. J Bacteriol195:3603–3609 [CrossRef][PubMed]
    [Google Scholar]
  23. Flynn J. M., Christopherson M. R., Downs D. M.. 2013; Decreased coenzyme A levels in ridA mutant strains of Salmonella enterica result from inactivated serine hydroxymethyltransferase. Mol Microbiol89:751–759 [CrossRef][PubMed]
    [Google Scholar]
  24. Gelfand M. S., Koonin E. V., Mironov A. A.. 2000; Prediction of transcription regulatory sites in Archaea by a comparative genomic approach. Nucleic Acids Res28:695–705 [CrossRef][PubMed]
    [Google Scholar]
  25. Grammann K., Volke A., Kunte H. J.. 2002; New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. J Bacteriol184:3078–3085 [CrossRef][PubMed]
    [Google Scholar]
  26. Haydon D. J., Guest J. R.. 1991; A new family of bacterial regulatory proteins. FEMS Microbiol Lett63:291–295 [CrossRef][PubMed]
    [Google Scholar]
  27. Ito T., Iimori J., Takayama S., Moriyama A., Yamauchi A., Hemmi H., Yoshimura T.. 2013; Conserved pyridoxal protein that regulates Ile and Val metabolism. J Bacteriol195:5439–5449 [CrossRef][PubMed]
    [Google Scholar]
  28. Jebbar M., Sohn-Bösser L., Bremer E., Bernard T., Blanco C.. 2005; Ectoine-induced proteins in Sinorhizobium meliloti include an ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism. J Bacteriol187:1293–1304 [CrossRef][PubMed]
    [Google Scholar]
  29. Jochmann N., Götker S., Tauch A.. 2011; Positive transcriptional control of the pyridoxal phosphate biosynthesis genes pdxST by the MocR-type regulator PdxR of Corynebacterium glutamicum ATCC 13032. Microbiology157:77–88 [CrossRef][PubMed]
    [Google Scholar]
  30. Kontro P., Oja S. S.. 1981; Hypotaurine transport in brain slices: comparison with taurine and GABA. Neurochem Res6:1179–1191 [CrossRef][PubMed]
    [Google Scholar]
  31. Kurihara S., Kato K., Asada K., Kumagai H., Suzuki H.. 2010; A putrescine-inducible pathway comprising PuuE-YneI in which gamma-aminobutyrate is degraded into succinate in Escherichia coli K-12. J Bacteriol192:4582–4591 [CrossRef][PubMed]
    [Google Scholar]
  32. Lambrecht J. A., Flynn J. M., Downs D. M.. 2012; Conserved YjgF protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions. J Biol Chem287:3454–3461 [CrossRef][PubMed]
    [Google Scholar]
  33. Lambrecht J. A., Schmitz G. E., Downs D. M.. 2013; RidA proteins prevent metabolic damage inflicted by PLP-dependent dehydratases in all domains of life. MBio4:e00033-13 [CrossRef][PubMed]
    [Google Scholar]
  34. Leyn S. A., Kazanov M. D., Sernova N. V., Ermakova E. O., Novichkov P. S., Rodionov D. A.. 2013; Genomic reconstruction of the transcriptional regulatory network in Bacillus subtilis. J Bacteriol195:2463–2473 [CrossRef][PubMed]
    [Google Scholar]
  35. Liao S., Bitoun J. P., Nguyen A. H., Bozner D., Yao X., Wen Z. T.. 2015; Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation. Mol Oral Microbiol30:255–268 [CrossRef][PubMed]
    [Google Scholar]
  36. Magrane M., UniProt Consortium. 2011; UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford)2011:bar009 [CrossRef][PubMed]
    [Google Scholar]
  37. Mavrodi D. V., Ksenzenko V. N., Bonsall R. F., Cook R. J., Boronin A. M., Thomashow L. S.. 1998; A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens2-79. J Bacteriol180:2541–2548[PubMed]
    [Google Scholar]
  38. Mayer J., Cook A. M.. 2009; Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway. J Bacteriol191:6052–6058 [CrossRef][PubMed]
    [Google Scholar]
  39. Milano T., Contestabile R., Lo Presti A., Ciccozzi M., Pascarella S.. 2015; The aspartate aminotransferase-like domain of Firmicutes MocR transcriptional regulators. Comput Biol Chem58:55–61 [CrossRef][PubMed]
    [Google Scholar]
  40. Mironov A. A., Vinokurova N. P., Gel'fand M. S.. 2000; [Software for analyzing bacterial genomes]. Mol Biol (Mosk)34:222–231 [CrossRef][PubMed]
    [Google Scholar]
  41. Mostafavi M., Lewis J. C., Saini T., Bustamante J. A., Gao I. T., Tran T. T., King S. N., Huang Z., Chen J. C.. 2014; Analysis of a taurine-dependent promoter in Sinorhizobium meliloti that offers tight modulation of gene expression. BMC Microbiol14:295 [CrossRef][PubMed]
    [Google Scholar]
  42. Newman J. A., Das S. K., Sedelnikova S. E., Rice D. W.. 2006; Cloning, purification and preliminary crystallographic analysis of a putative pyridoxal kinase from Bacillus subtilis. Acta Crystallogr Sect F Struct Biol Cryst Commun62:1006–1009 [CrossRef][PubMed]
    [Google Scholar]
  43. Novichkov P. S., Rodionov D. A., Stavrovskaya E. D., Novichkova E. S., Kazakov A. E., Gelfand M. S., Arkin A. P., Mironov A. A., Dubchak I.. 2010; RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach. Nucleic Acids Res38:(Web Server)W299–W307 [CrossRef][PubMed]
    [Google Scholar]
  44. Novichkov P. S., Kazakov A. E., Ravcheev D. A., Leyn S. A., Kovaleva G. Y., Sutormin R. A., Kazanov M. D., Riehl W., Arkin A. P., other authors. 2013; RegPrecise 3.0 – a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics14:745 [CrossRef][PubMed]
    [Google Scholar]
  45. Park J. H., Burns K., Kinsland C., Begley T. P.. 2004; Characterization of two kinases involved in thiamine pyrophosphate and pyridoxal phosphate biosynthesis in Bacillus subtilis: 4-amino-5-hydroxymethyl-2methylpyrimidine kinase and pyridoxal kinase. J Bacteriol186:1571–1573 [CrossRef][PubMed]
    [Google Scholar]
  46. Parsons J. F., Calabrese K., Eisenstein E., Ladner J. E.. 2004; Structure of the phenazine biosynthesis enzyme PhzG. Acta Crystallogr D Biol Crystallogr60:2110–2113 [CrossRef][PubMed]
    [Google Scholar]
  47. Percudani R., Peracchi A.. 2003; A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep4:850–854 [CrossRef][PubMed]
    [Google Scholar]
  48. Prell J., Bourdès A., Karunakaran R., Lopez-Gomez M., Poole P.. 2009; Pathway of gamma-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis. J Bacteriol191:2177–2186 [CrossRef][PubMed]
    [Google Scholar]
  49. Ravcheev D. A., Best A. A., Tintle N., Dejongh M., Osterman A. L., Novichkov P. S., Rodionov D. A.. 2011; Inference of the transcriptional regulatory network in Staphylococcus aureus by integration of experimental and genomics-based evidence. J Bacteriol193:3228–3240 [CrossRef][PubMed]
    [Google Scholar]
  50. Ravcheev D. A., Best A. A., Sernova N. V., Kazanov M. D., Novichkov P. S., Rodionov D. A.. 2013a; Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria. BMC Genomics14:94 [CrossRef][PubMed]
    [Google Scholar]
  51. Ravcheev D. A., Godzik A., Osterman A. L., Rodionov D. A.. 2013b; Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics14:873 [CrossRef][PubMed]
    [Google Scholar]
  52. Ravcheev D. A., Khoroshkin M. S., Laikova O. N., Tsoy O. V., Sernova N. V., Petrova S. A., Rakhmaninova A. B., Novichkov P. S., Gelfand M. S., Rodionov D. A.. 2014; Comparative genomics and evolution of regulons of the LacI-family transcription factors. Front Microbiol5:294 [CrossRef][PubMed]
    [Google Scholar]
  53. Rigali S., Derouaux A., Giannotta F., Dusart J.. 2002; Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem277:12507–12515 [CrossRef][PubMed]
    [Google Scholar]
  54. Rigali S., Schlicht M., Hoskisson P., Nothaft H., Merzbacher M., Joris B., Titgemeyer F.. 2004; Extending the classification of bacterial transcription factors beyond the helix–turn–helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Res32:3418–3426 [CrossRef][PubMed]
    [Google Scholar]
  55. Rodionov D. A.. 2007; Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev107:3467–3497 [CrossRef][PubMed]
    [Google Scholar]
  56. Rodionov D. A., Novichkov P. S., Stavrovskaya E. D., Rodionova I. A., Li X., Kazanov M. D., Ravcheev D. A., Gerasimova A. V., Kazakov A. E., other authors. 2011; Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus. BMC Genomics12:(Suppl 1)S3 [CrossRef][PubMed]
    [Google Scholar]
  57. Rodionov D. A., Rodionova I. A., Li X., Ravcheev D. A., Tarasova Y., Portnoy V. A., Zengler K., Osterman A. L.. 2013; Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima. Front Microbiol4:244 [CrossRef][PubMed]
    [Google Scholar]
  58. Rossbach S., Kulpa D. A., Rossbach U., de Bruijn F. J.. 1994; Molecular and genetic characterization of the rhizopine catabolism (mocABRC) genes of Rhizobium meliloti L5-30. Mol Gen Genet245:11–24 [CrossRef][PubMed]
    [Google Scholar]
  59. Ryu H. B., Shin I., Yim H. S., Kang S. O.. 2006; YlaC is an extracytoplasmic function (ECF) sigma factor contributing to hydrogen peroxide resistance in Bacillus subtilis. J Microbiol44:206–216[PubMed]
    [Google Scholar]
  60. Schneider B. L., Reitzer L.. 2012; Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli. J Bacteriol194:4080–4088 [CrossRef][PubMed]
    [Google Scholar]
  61. Schwibbert K., Marin-Sanguino A., Bagyan I., Heidrich G., Lentzen G., Seitz H., Rampp M., Schuster S. C., Klenk H. P., other authors. 2011; A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environ Microbiol13:1973–1994 [CrossRef][PubMed]
    [Google Scholar]
  62. Suvorova I. A., Korostelev Y. D., Gelfand M. S.. 2015; GntR family of bacterial transcription factors and their DNA binding motifs: structure, positioning and co-evolution. PLoS One10:e0132618 [CrossRef][PubMed]
    [Google Scholar]
  63. Tan K., McCue L. A., Stormo G. D.. 2005; Making connections between novel transcription factors and their DNA motifs. Genome Res15:312–320 [CrossRef][PubMed]
    [Google Scholar]
  64. Tramonti A., Fiascarelli A., Milano T., di Salvo M. L., Nogués I., Pascarella S., Contestabile R.. 2015; Molecular mechanism of PdxR – a transcriptional activator involved in the regulation of vitamin B6 biosynthesis in the probiotic bacterium Bacillus clausii. FEBS J282:2966–2984 [CrossRef][PubMed]
    [Google Scholar]
  65. Weinitschke S., Denger K., Cook A. M., Smits T. H.. 2007; The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. Microbiology153:3055–3060 [CrossRef][PubMed]
    [Google Scholar]
  66. Wiethaus J., Schubert B., Pfänder Y., Narberhaus F., Masepohl B.. 2008; The GntR-like regulator TauR activates expression of taurine utilization genes in Rhodobacter capsulatus. J Bacteriol190:487–493 [CrossRef][PubMed]
    [Google Scholar]
  67. Novichkov, P. S., Suvorova, I. A. & Rodionov, D. A. RegPrecise 3.0. Collection of regulogs for GntR/MocR transcription factor familyhttp://regprecise.lbl.gov/RegPrecise/collection_tffam.jsp?tffamily_id = 83 2015
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000047
Loading
/content/journal/mgen/10.1099/mgen.0.000047
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error