1887

Abstract

Bacteria can exchange genetic material, or acquire genes found in the environment. This process, generally known as bacterial recombination, can have a strong impact on the evolution and phenotype of bacteria, for example causing the spread of antibiotic resistance across clades and species, but can also disrupt phylogenetic and transmission inferences. With the increasing affordability of whole genome sequencing, the need has emerged for an efficient simulator of bacterial evolution to test and compare methods for phylogenetic and population genetic inference, and for simulation-based estimation. We present SimBac, a whole-genome bacterial evolution simulator that is roughly two orders of magnitude faster than previous software and includes a more general model of bacterial evolution, allowing both within- and between-species homologous recombination. Since methods modelling bacterial recombination generally focus on only one of these two modes of recombination, the possibility to simulate both allows for a general and fair benchmarking. SimBac is available from https://github.com/tbrown91/SimBac and is distributed as open source under the terms of the GNU General Public Licence.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000044
2016-01-19
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/1/mgen000044.html?itemId=/content/journal/mgen/10.1099/mgen.0.000044&mimeType=html&fmt=ahah

References

  1. Arenas M. 2013; Computer programs and methodologies for the simulation of DNA sequence data with recombination. Front Genet 4:9 [View Article][PubMed]
    [Google Scholar]
  2. Arenas M., Posada D. 2007; Recodon: coalescent simulation of coding DNA sequences with recombination, migration and demography. BMC Bioinformatics 8:458 [View Article][PubMed]
    [Google Scholar]
  3. Arenas M., Posada D. 2010; Coalescent simulation of intracodon recombination. Genetics 184:429–437 [View Article][PubMed]
    [Google Scholar]
  4. Arenas M., Posada D. 2014; Simulation of genome-wide evolution under heterogeneous substitution models and complex multispecies coalescent histories. Mol Biol Evol 31:1295–1301 [View Article][PubMed]
    [Google Scholar]
  5. Buckee C. O., Jolley K. A., Recker M., Penman B., Kriz P., Gupta S., Maiden M. C. 2008; Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis . Proc Natl Acad Sci U S A 105:15082–15087 [View Article][PubMed]
    [Google Scholar]
  6. Chadeau-Hyam M., Hoggart C. J., O'Reilly P. F., Whittaker J. C., De Iorio M., Balding D. J. 2008; Fregene: simulation of realistic sequence-level data in populations and ascertained samples. BMC Bioinformatics 9:364 [View Article][PubMed]
    [Google Scholar]
  7. Chen G. K., Marjoram P., Wall J. D. 2009; Fast and flexible simulation of DNA sequence data. Genome Res 19:136–142 [View Article][PubMed]
    [Google Scholar]
  8. Croucher N. J., Page A. J., Connor T. R., Delaney A. J., Keane J. A., Bentley S. D., Parkhill J., Harris S. R. 2015; Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 43:e15 [View Article][PubMed]
    [Google Scholar]
  9. Dalquen D. A., Anisimova M., Gonnet G. H., Dessimoz C. 2012; ALF—a simulation framework for genome evolution. Mol Biol Evol 29:1115–1123 [View Article][PubMed]
    [Google Scholar]
  10. Didelot X., Falush D. 2007; Inference of bacterial microevolution using multilocus sequence data. Genetics 175:1251–1266 [View Article][PubMed]
    [Google Scholar]
  11. Didelot X., Wilson D. J. 2015; ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLOS Comput Biol 11:e1004041 [View Article][PubMed]
    [Google Scholar]
  12. Didelot X., Lawson D., Falush D. 2009; SimMLST: simulation of multi-locus sequence typing data under a neutral model. Bioinformatics 25:1442–1444 [View Article][PubMed]
    [Google Scholar]
  13. Didelot X., Lawson D., Darling A., Falush D. 2010; Inference of homologous recombination in bacteria using whole-genome sequences. Genetics 186:1435–1449 [View Article][PubMed]
    [Google Scholar]
  14. Didelot X., Bowden R., Wilson D. J., Peto T. E., Crook D. W. 2012; Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 13:601–612 [View Article][PubMed]
    [Google Scholar]
  15. Everitt R. G., Didelot X., Batty E. M., Miller R. R., Knox K., Young B. C., Bowden R., Auton A., Votintseva A., other authors. 2014; Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus . Nat Commun 5:3956 [View Article][PubMed]
    [Google Scholar]
  16. Excoffier L., Foll M. 2011; fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27:1332–1334 [View Article][PubMed]
    [Google Scholar]
  17. Excoffier L., Novembre J., Schneider S. 2000; simcoal: a general coalescent program for the simulation of molecular data in interconnected populations with arbitrary demography. J Hered 91:506–509 [View Article][PubMed]
    [Google Scholar]
  18. Falush D., Torpdahl M., Didelot X., Conrad D. F., Wilson D. J., Achtman M. 2006; Mismatch induced speciation in Salmonella: model and data. Philos Trans R Soc Lond B Biol Sci 361:2045–2053 [View Article][PubMed]
    [Google Scholar]
  19. Fearnhead P., Smith N. G., Barrigas M., Fox A., French N. 2005; Analysis of recombination in Campylobacter jejuni from MLST population data. J Mol Evol 61:333–340 [View Article][PubMed]
    [Google Scholar]
  20. Fletcher W., Yang Z. 2009; INDELible: a flexible simulator of biological sequence evolution. Mol Biol Evol 26:1879–1888 [View Article][PubMed]
    [Google Scholar]
  21. Fraser C., Hanage W. P., Spratt B. G. 2005; Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci U S A 102:1968–1973 [View Article][PubMed]
    [Google Scholar]
  22. Gray T. A., Krywy J. A., Harold J., Palumbo M. J., Derbyshire K. M. 2013; Distributive conjugal transfer in mycobacteria generates progeny with meiotic-like genome-wide mosaicism, allowing mapping of a mating identity locus. PLoS Biol 11:e1001602 [View Article][PubMed]
    [Google Scholar]
  23. Hedge J., Wilson D. J. 2014; Bacterial phylogenetic reconstruction from whole genomes is robust to recombination but demographic inference is not. MBio 5:e02158–e02114 [View Article][PubMed]
    [Google Scholar]
  24. Hellenthal G., Stephens M. 2007; msHOT: modifying Hudson's ms simulator to incorporate crossover and gene conversion hotspots. Bioinformatics 23:520–521 [View Article][PubMed]
    [Google Scholar]
  25. Hudson R. R. 2002; Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18:337–338 [View Article][PubMed]
    [Google Scholar]
  26. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. Mammalian Protein Metabolism 321–132 Munro H. N. New York: Academic Press; [View Article]
    [Google Scholar]
  27. Laval G., Excoffier L. 2004; simcoal 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history. Bioinformatics 20:2485–2487 [View Article][PubMed]
    [Google Scholar]
  28. Mailund T., Schierup M. H., Pedersen C. N., Mechlenborg P. J., Madsen J. N., Schauser L. 2005; CoaSim: a flexible environment for simulating genetic data under coalescent models. BMC Bioinformatics 6:252 [View Article][PubMed]
    [Google Scholar]
  29. Marjoram P., Wall J. D. 2006; Fast coalescent simulation. BMC Genet 7:16 [CrossRef]
    [Google Scholar]
  30. Marttinen P., Baldwin A., Hanage W. P., Dowson C., Mahenthiralingam E., Corander J. 2008; Bayesian modeling of recombination events in bacterial populations. BMC Bioinformatics 9:421 [CrossRef]
    [Google Scholar]
  31. Marttinen P., Hanage W. P., Croucher N. J., Connor T. R., Harris S. R., Bentley S. D., Corander J. 2012; Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res 40:e6 [View Article][PubMed]
    [Google Scholar]
  32. Posada D., Crandall K. A. 2002; The effect of recombination on the accuracy of phylogeny estimation. J Mol Evol 54:396–402 [View Article][PubMed]
    [Google Scholar]
  33. Rambaut A., Grassly N. C. 1997; Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci 13:235–238[PubMed]
    [Google Scholar]
  34. Ramos-Onsins S. E., Mitchell-Olds T. 2007; Mlcoalsim: multilocus coalescent simulations. Evol Bioinform Online 3:41–44[PubMed]
    [Google Scholar]
  35. Robinson D., Foulds L. R. 1981; Comparison of phylogenetic trees. Math Biosci 53:131–147 [View Article]
    [Google Scholar]
  36. Schierup M. H., Hein J. 2000; Consequences of recombination on traditional phylogenetic analysis. Genetics 156:879–891[PubMed]
    [Google Scholar]
  37. Turner K. M., Hanage W. P., Fraser C., Connor T. R., Spratt B. G. 2007; Assessing the reliability of eBURST using simulated populations with known ancestry. BMC Microbiol 7:30 [View Article][PubMed]
    [Google Scholar]
  38. Wang Y., Zhou Y., Li L., Chen X., Liu Y., Ma Z. M., Xu S. 2014; A new method for modeling coalescent processes with recombination. BMC Bioinformatics 15:273 [View Article][PubMed]
    [Google Scholar]
  39. Wilson D. J. 2012; Insights from genomics into bacterial pathogen populations. PLoS Pathog 8:e1002874 [View Article][PubMed]
    [Google Scholar]
  40. Wilson D. J., Gabriel E., Leatherbarrow A. J., Cheesbrough J., Gee S., Bolton E., Fox A., Hart C. A., Diggle P. J., Fearnhead P. 2009; Rapid evolution and the importance of recombination to the gastroenteric pathogen Campylobacter jejuni . Mol Biol Evol 26:385–397 [View Article][PubMed]
    [Google Scholar]
  41. Wiuf C., Hein J. 2000; The coalescent with gene conversion. Genetics 155:451–462[PubMed]
    [Google Scholar]
  42. Brown, T., Didelot, X., Wilson, D.J. & De Maio, N., GitHub https://github.com/tbrown91/SimBac (2015).
/content/journal/mgen/10.1099/mgen.0.000044
Loading
/content/journal/mgen/10.1099/mgen.0.000044
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error