1887

Abstract

Background:

Population samples show bacterial genomes can be divided into a core of ubiquitous genes and accessory genes that are present in a fraction of isolates. The ecological significance of this variation in gene content remains unclear. However, microbiologists agree that a bacterial species should be ‘genomically coherent’, even though there is no consensus on how this should be determined.

Results:

We use a parsimonious model combining diversification in both the core and accessory genome, including mutation, homologous recombination (HR) and horizontal gene transfer (HGT) introducing new loci, to produce a population of interacting clusters of strains with varying genome content. New loci introduced by HGT may then be transferred on by HR. The model fits well to a systematic population sample of 616 pneumococcal genomes, capturing the major features of the population structure with parameter values that agree well with empirical estimates.

Conclusions:

The model does not include explicit selection on individual genes, suggesting that crude comparisons of gene content may be a poor predictor of ecological function. We identify a clearly divergent subpopulation of pneumococci that are inconsistent with the model and may be considered genomically incoherent with the rest of the population. These strains have a distinct disease tropism and may be rationally defined as a separate species. We also find deviations from the model that may be explained by recent population bottlenecks or spatial structure.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000038
2015-11-06
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/mgen/1/5/mgen000038.html?itemId=/content/journal/mgen/10.1099/mgen.0.000038&mimeType=html&fmt=ahah

References

  1. Baltrus D. A.. 2013; Exploring the costs of horizontal gene transfer. Trends Ecol Evol28:489–495 [CrossRef][PubMed]
    [Google Scholar]
  2. Baumdicker F., Hess W. R., Pfaffelhuber P.. 2012; The infinitely many genes model for the distributed genome of bacteria. Genome Biol Evol4:443–456 [CrossRef][PubMed]
    [Google Scholar]
  3. Chewapreecha C., Harris S. R., Croucher N. J., Turner C., Marttinen P., Cheng L., Pessia A., Aanensen D. M., Mather A. E., other authors. 2014; Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet46:305–309 [CrossRef][PubMed]
    [Google Scholar]
  4. Collins R. E., Higgs P. G.. 2012; Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol Biol Evol29:3413–3425 [CrossRef][PubMed]
    [Google Scholar]
  5. Croucher N. J., Finkelstein J. A., Pelton S. I., Mitchell P. K., Lee G. M., Parkhill J., Bentley S. D., Hanage W. P., Lipsitch M.. 2013; Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet45:656–663 [CrossRef][PubMed]
    [Google Scholar]
  6. Croucher N. J., Coupland P. G., Stevenson A. E., Callendrello A., Bentley S. D., Hanage W. P.. 2014; Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun5:5471[CrossRef]
    [Google Scholar]
  7. Doroghazi J. R., Buckley D. H.. 2011; A model for the effect of homologous recombination on microbial diversification. Genome Biol Evol3:1349–1356 [CrossRef][PubMed]
    [Google Scholar]
  8. Fraser C., Hanage W. P., Spratt B. G.. 2005; Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci U S A102:1968–1973 [CrossRef][PubMed]
    [Google Scholar]
  9. Fraser C., Hanage W. P., Spratt B. G.. 2007; Recombination and the nature of bacterial speciation. Science315:476–480 [CrossRef][PubMed]
    [Google Scholar]
  10. Fraser C., Alm E. J., Polz M. F., Spratt B. G., Hanage W. P.. 2009; The bacterial species challenge: making sense of genetic and ecological diversity. Science323:741–746 [CrossRef][PubMed]
    [Google Scholar]
  11. Gouriéroux C., Monfort A.. 1997; Simulation-based Econometric Methods Oxford: Oxford University Press;[CrossRef]
    [Google Scholar]
  12. Gutmann M. U., Corander J.. 2015; Bayesian optimization for likelihood-free inference of simulator-based statistical models. Journal of Machine Learning Research in press arXiv:1501.03291
    [Google Scholar]
  13. Haegeman B., Weitz J. S.. 2012; A neutral theory of genome evolution and the frequency distribution of genes. BMC Genomics13:196 [CrossRef][PubMed]
    [Google Scholar]
  14. Higgs P. G., Derrida B.. 1992; Genetic distance and species formation in evolving populations. J Mol Evol35:454–465 [CrossRef][PubMed]
    [Google Scholar]
  15. Knöppel A., Lind P. A., Lustig U., Näsvall J., Andersson D. I.. 2014; Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol Biol Evol31:1220–1227 [CrossRef][PubMed]
    [Google Scholar]
  16. Lobkovsky A. E., Wolf Y. I., Koonin E. V.. 2013; Gene frequency distributions reject a neutral model of genome evolution. Genome Biol Evol5:233–242 [CrossRef][PubMed]
    [Google Scholar]
  17. Majewski J., Zawadzki P., Pickerill P., Cohan F. M., Dowson C. G.. 2000; Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol182:1016–1023 [CrossRef][PubMed]
    [Google Scholar]
  18. McFadden D.. 1989; A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica57:995–1026 [CrossRef]
    [Google Scholar]
  19. Pakes A., Pollard D.. 1989; Simulation and the asymptotics of optimization 262 estimators. Econometrica57:1027–1057 [CrossRef]
    [Google Scholar]
  20. Paradis E., Claude J., Strimmer K.. 2004; ape: analyses of phylogenetics and evolution in r language. Bioinformatics20:289–290 [CrossRef][PubMed]
    [Google Scholar]
  21. Perna N. T., Plunkett G. III, Burland V., Mau B., Glasner J. D., Rose D. J., Mayhew G. F., Evans P. S., Gregor J., other authors. 2001; Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature409:529–533 [CrossRef][PubMed]
    [Google Scholar]
  22. Rasmussen C. E., Williams C. K. I.. 2006; Gaussian Processes for Machine Learning Cambridge, MA: MIT Press;
    [Google Scholar]
  23. Shapiro B. J., Polz M. F.. 2014; Ordering microbial diversity into ecologically and genetically cohesive units. Trends in Microbiology22:235–247[CrossRef]
    [Google Scholar]
  24. Tatusov R. L., Koonin E. V., Lipman D. J.. 1997; A genomic perspective on protein families. Science278:631–637 [CrossRef][PubMed]
    [Google Scholar]
  25. Touchon M., Hoede C., Tenaillon O., Barbe V., Baeriswyl S., Bidet P., Bingen E., Bonacorsi S., Bouchier C., other authors. 2009; Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet5:e1000344 [CrossRef][PubMed]
    [Google Scholar]
  26. Vogan A. A., Higgs P. G.. 2011; The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. Biol Direct6:1 [CrossRef][PubMed]
    [Google Scholar]
  27. Vulić M., Dionisio F., Taddei F., Radman M.. 1997; Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A94:9763–9767 [CrossRef][PubMed]
    [Google Scholar]
  28. Wood S. N.. 2010; Statistical inference for noisy nonlinear ecological dynamic systems. Nature466:1102–1104 [CrossRef][PubMed]
    [Google Scholar]
  29. Zawadzki P., Roberts M. S., Cohan F. M.. 1995; The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics140:917–9327672591
    [Google Scholar]
  30. Marttinen, P., Croucher, N. J., Gutmann, M. U., Corander, J. & Hanage, W. P. (2015). Figshare. http://figshare.com/s/6471c982669011e58c4806ec4b8d1f61
  31. Marttinen, P., Croucher, N. J., Gutmann, M. U., Corander, J. & Hanage, W. P. (2015). Figshare. http://figshare.com/s/c70dd5e0669011e59ff906ec4bbcf141
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000038
Loading
/content/journal/mgen/10.1099/mgen.0.000038
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error