1887

Abstract

Moose rumen samples from Vermont, Alaska and Norway were investigated for methanogenic archaeal and protozoal density using real-time PCR, and diversity using high-throughput sequencing of the 16S and 18S rRNA genes. Vermont moose showed the highest protozoal and methanogen densities. Alaskan samples had the highest percentages of , followed by the Norwegian samples. One Norwegian sample contained 43 % , whilst all other samples contained < 10 %. Vermont samples had large percentages of , as did two Norwegian samples. represented one-third of sequences in three samples. Samples were heterogeneous based on gender, geographical location and weight class using analysis of molecular variance (AMOVA). Two Alaskan moose contained >70 % and one contained >75 % spp. Protozoa from Norwegian moose belonged predominantly (>50 %) to the genus , especially . Norwegian moose contained a large proportion of sequences (25–97 %) which could not be classified beyond family. Protozoa from Vermont samples were predominantly (>75 %), with up to 7 % . Four of the eight Vermont samples also contained 5–12 % spp. Samples were heterogeneous based on AMOVA, principal coordinate analysis and UniFrac. This study gives the first insight into the methanogenic archaeal diversity in the moose rumen. The high percentage of rumen archaeal species associated with high starch diets found in Alaskan moose corresponds well to previous data suggesting that they feed on plants high in starch. Similarly, the higher percentage of species related to forage diets in Vermont moose also relates well to their higher intake of fibre.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the source is credited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000034
2015-10-13
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/1/4/mgen000034.html?itemId=/content/journal/mgen/10.1099/mgen.0.000034&mimeType=html&fmt=ahah

References

  1. Béra-Maillet C., Devillard E., Cezette M., Jouany J.-P., Forano E. 2005; Xylanases and carboxymethylcellulases of the rumen protozoa Polyplastron multivesiculatum, Eudiplodinium maggii and Entodinium sp. FEMS Microbiol Lett 244:149–156 [View Article][PubMed]
    [Google Scholar]
  2. Carberry C. A., Waters S. M., Kenny D. A., Creevey C. J. 2014; Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl Environ Microbiol 80:586–594 [View Article][PubMed]
    [Google Scholar]
  3. Cersosimo L. M., Lachance H., St-Pierre B., van Hoven W., Wright A.-D. G. 2015; Examination of the rumen bacteria and methanogenic archaea of wild impalas (Aepyceros melampus melampus) from Pongola, South Africa. Microb Ecol 69:577–585[PubMed] [CrossRef]
    [Google Scholar]
  4. Chao A., Shen T.-J. 2003; Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample. Environ Ecol Stat 10:429–443 [View Article]
    [Google Scholar]
  5. Cunha I. S., Barreto C. C., Costa O. Y. A., Bomfim M. A., Castro A. P., Kruger R. H., Quirino B. F. 2011; Bacteria and Archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil. Anaerobe 17:118–124 [View Article][PubMed]
    [Google Scholar]
  6. Dehority B. A. 1974; Rumen ciliate fauna of Alaskan moose (Alces americana), musk-ox (Ovibos moschatus) and Dall moutain sheep (Ovis dalli). J Protozool 21:26–32 [View Article][PubMed]
    [Google Scholar]
  7. Dehority B. A. 1986; Microbes in the foregut of arctic ruminants. In Control of Digestion and Metabolism in Ruminants: Proceedings of the Sixth International Symposium on Ruminant Physiology pp 307–325Edited by Milligan L. P., Grovum W. L., Dobson A. Englewood Cliffs, NJ: Prentice-Hall;
    [Google Scholar]
  8. Dehority B. A., Odenyo A. A. 2003; Influence of diet on the rumen protozoal fauna of indigenous African wild ruminants. J Eukaryot Microbiol 50:220–223 [View Article][PubMed]
    [Google Scholar]
  9. Denman S. E., Tomkins N. W., McSweeney C. S. 2007; Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62:313–322 [View Article][PubMed]
    [Google Scholar]
  10. Dohme F., Machmüller A., Wasserfallen A., Kreuzer M. 2001; Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett Appl Microbiol 32:47–51 [View Article][PubMed]
    [Google Scholar]
  11. Dridi B., Henry M., El Khéchine A., Raoult D., Drancourt M. 2009; High prevalence of Methanobrevibacter smithii Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4:e7063 [View Article][PubMed]
    [Google Scholar]
  12. EPA 2014 Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2012 Washington, DC: Environmental Protection Agency;
    [Google Scholar]
  13. Facey H. V., Northwood K. S., Wright A.-D. G. 2012; Molecular diversity of methanogens in fecal samples from captive Sumatran orangutans (Pongo abelii). Am J Primatol 74:408–413 [View Article][PubMed]
    [Google Scholar]
  14. Finlay B. J., Esteban G., Clarke K. J., Williams A. G., Embley T. M., Hirt R. P. 1994; Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 117:157–161 [View Article][PubMed]
    [Google Scholar]
  15. Godoy-Vitorino F., Goldfarb K. C., Brodie E. L., Garcia-Amado M. A., Michelangeli F., Domínguez-Bello M. G. 2010; Developmental microbial ecology of the crop of the folivorous hoatzin. ISME J 4:611–620 [View Article][PubMed]
    [Google Scholar]
  16. Good I. J. 1953; On population frequencies of species and the estimation of population parameters. Biometrika 40:237–264 [View Article]
    [Google Scholar]
  17. Hamady M., Lozupone C., Knight R. 2010; Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27 [View Article][PubMed]
    [Google Scholar]
  18. Hristov A. N. 2012; Historic, pre-European settlement, and present-day contribution of wild ruminants to enteric methane emissions in the United States. J Anim Sci 90:1371–1375 [View Article][PubMed]
    [Google Scholar]
  19. Hundertmark K. J., Bowyer R. T., Shields G. F., Schwartz C. C. 2003; Mitochondrial phylogeography of moose (Alces alces) in North America. J Mammal 84:718–728 [View Article]
    [Google Scholar]
  20. Hungate R. E. 1942; The culture of Eudiplodinium neglectum with experiments on the digestion of cellulose. Biol Bull 83:303–319 [View Article]
    [Google Scholar]
  21. Imai S., Oku Y., Morita T., Ike K., Guirong. 2004; Rumen ciliate protozoal fauna of reindeer in Inner Mongolia, China. J Vet Med Sci 66:209–212 [View Article][PubMed]
    [Google Scholar]
  22. Ishaq S. L., Wright A.-D. G. 2012; Insight into the bacterial gut microbiome of the North American moose (Alces alces). BMC Microbiol 12:212 [View Article][PubMed]
    [Google Scholar]
  23. Ishaq S. L., Wright A.-D. G. 2014a; High-throughput DNA sequencing of the ruminal bacteria from moose (Alces alces) in Vermont, Alaska, and Norway. Microb Ecol 68:185–195 [View Article][PubMed]
    [Google Scholar]
  24. Ishaq S. L., Wright A.-D. G. 2014b; Design and validation of four new primers for next-generation sequencing to target the 18S rRNA genes of gastrointestinal ciliate protozoa. Appl Environ Microbiol 80:5515–5521 [View Article][PubMed]
    [Google Scholar]
  25. Joblin K. N., Naylor G. E., Williams A. G. 1990; Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi. Appl Environ Microbiol 56:2287–2295[PubMed]
    [Google Scholar]
  26. Johnson K. A., Johnson D. E. 1995; Methane emissions from cattle. J Anim Sci 73:2483–2492[PubMed]
    [Google Scholar]
  27. Krascheninnikow S. 1955; Observations on the morphology and division of Eudiplodinium neglectum Dogiel (Ciliata Ento-diniomorpha) from the stomach of a moose (Alces americana). J Protozool 2:124–134 [View Article]
    [Google Scholar]
  28. Lechner I., Barboza P., Collins W., Fritz J., Günther D., Hattendorf B., Hummel J., Südekum K.-H., Clauss M. 2010; Differential passage of fluids and different-sized particles in fistulated oxen (Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces): rumen particle size discrimination is independent from contents stratification. Comp Biochem Physiol A Mol Integr Physiol 155:211–222 [View Article][PubMed]
    [Google Scholar]
  29. Li R. W., Connor E. E., Li C., Baldwin Vi R. L., Sparks M. E. 2012; Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol 14:129–139 [View Article][PubMed]
    [Google Scholar]
  30. Liu C., Zhu Z. P., Liu Y. F., Guo T. J., Dong H. M. 2012; Diversity and abundance of the rumen and fecal methanogens in Altay sheep native to Xinjiang and the influence of diversity on methane emissions. Arch Microbiol 194:353–361 [View Article][PubMed]
    [Google Scholar]
  31. Mathur R., Kim G., Morales W., Sung J., Rooks E., Pokkunuri V., Weitsman S., Barlow G. M., Chang C., Pimentel M. 2013; Intestinal Methanobrevibacter smithii but not total bacteria is related to diet-induced weight gain in rats. Obesity (Silver Spring) 21:748–754 [View Article][PubMed]
    [Google Scholar]
  32. McAllister T. A., Okine E. K., Mathison G. W., Cheng K.-J. 1996; Dietary, environmental and microbiological aspects of methane production in ruminants. Can J Anim Sci 76:231–243 [View Article]
    [Google Scholar]
  33. Michałowski T., Muszyński P., Landa I. 1991; Factors influencing the growth of rumen ciliates Eudiplodinium maggii in vitro . Acta Protozool 30:115–120
    [Google Scholar]
  34. Morgavi D. P., Martin C., Jouany J.-P., Ranilla M. J. 2012; Rumen protozoa and methanogenesis: not a simple cause-effect relationship. Br J Nutr 107:388–397 [View Article][PubMed]
    [Google Scholar]
  35. Naga M. A., Abou Akkada A. R., el-Shazly K. 1969; Establishment of rumen ciliate protozoa in cow and water buffalo (Bosbubalus L.) calves under late and early weaning systems. J Dairy Sci 52:110–112 [View Article][PubMed]
    [Google Scholar]
  36. Newbold C. J., Lassalas B., Jouany J.-P. 1995; The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro . Lett Appl Microbiol 21:230–234 [View Article][PubMed]
    [Google Scholar]
  37. Ohene-Adjei S., Teather R. M., Ivan M., Forster R. J. 2007; Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen. Appl Environ Microbiol 73:4609–4618 [View Article][PubMed]
    [Google Scholar]
  38. Piao Hailan P., Lachman M., Malfatti S., Sczyrba A., Knierim B., Auer M., Tringe S. G., Mackie R. I., Yeoman C. J., Hess M. 2014; Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Front Microbiol 5:307
    [Google Scholar]
  39. Rea S., Bowman J. P., Popo versus ki S., Pimm C., Wright A.-D. G. 2007; Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57:450–456 [View Article][PubMed]
    [Google Scholar]
  40. Saengkerdsub S., Herrera P., Woodward C. L., Anderson R. C., Nisbet D. J., Ricke S. C. 2007; Detection of methane and quantification of methanogenic archaea in faeces from young broiler chickens using real-time PCR. Lett Appl Microbiol 45:629–634 [View Article][PubMed]
    [Google Scholar]
  41. Samuel B. S., Gordon J. I. 2006; A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A 103:10011–10016 [View Article][PubMed]
    [Google Scholar]
  42. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H., other authors. 2009; Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541 [View Article][PubMed]
    [Google Scholar]
  43. Shannon C. E., Weaver W. 1949 The Mathematical Theory of Communication Urbana, IL: University of Illinois Press;
    [Google Scholar]
  44. Sharp R., Ziemer C. J., Stern M. D., Stahl D. A. 1998; Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol Ecol 26:71–78 [View Article]
    [Google Scholar]
  45. Shipley L. A., Blomquist S., Danell K. 1998; Diet choices by free-ranging moose in northern Sweden in relation to plant distribution, chemistry, and morphology. Can J Zool 76:1722–1733 [View Article]
    [Google Scholar]
  46. Skillman L. C., Evans P. N., Naylor G. E., Morvan B., Jarvis G. N., Joblin K. N. 2004; 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10:277–285 [View Article][PubMed]
    [Google Scholar]
  47. Sládeček F. 1946; Ophryoscolecidae from the stomach of Cervus elaphus L., Dama dama L., and Capreolus capreolus L. Vestn Csl Zool Spole 10:201–231
    [Google Scholar]
  48. Snelling T. J., Genç B., McKain N., Watson M., Waters S. M., Creevey C. J., Wallace R. J. 2014; Diversity and community composition of methanogenic archaea in the rumen of Scottish upland sheep assessed by different methods. PLoS One 9:e106491 [View Article][PubMed]
    [Google Scholar]
  49. St-Pierre B., Wright A.-D. G. 2012; Molecular analysis of methanogenic archaea in the forestomach of the alpaca (Vicugna pacos). BMC Microbiol 12:1 [View Article][PubMed]
    [Google Scholar]
  50. Stumm C. K., Gijzen H. J., Vogels G. D. 1982; Association of methanogenic bacteria with ovine rumen ciliates. Br J Nutr 47:95–99 [View Article][PubMed]
    [Google Scholar]
  51. Sundset M. A., Praesteng K. E., Cann I. K. O., Mathiesen S. D., Mackie R. I. 2007; Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microb Ecol 54:424–438 [View Article][PubMed]
    [Google Scholar]
  52. Sundset M. A., Edwards J. E., Cheng Y. F., Senosiain R. S., Fraile M. N., Northwood K. S., Praesteng K. E., Glad T., Mathiesen S. D., Wright A.-D. G. 2009a; Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea. FEMS Microbiol Ecol 70:553–562 [View Article][PubMed]
    [Google Scholar]
  53. Sundset M. A., Edwards J. E., Cheng Y. F., Senosiain R. S., Fraile M. N., Northwood K. S., Praesteng K. E., Glad T., Mathiesen S. D., Wright A.-D. G. 2009b; Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb Ecol 57:335–348 [View Article][PubMed]
    [Google Scholar]
  54. Sylvester J. T., Karnati S. K. R., Yu Z., Morrison M., Firkins J. L. 2004; Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr 134:3378–3384[PubMed]
    [Google Scholar]
  55. Vogels G. D., Hoppe W. F., Stumm C. K. 1980; Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612[PubMed]
    [Google Scholar]
  56. Wam H. K., Hjeljord O. 2010; Moose summer and winter diets along a large scale gradient of forage availability in southern Norway. Eur J Wildl Res 56:745–755 [View Article]
    [Google Scholar]
  57. Westerling B. 1969; The rumen ciliate fauna of cattle and sheep in Finnish Lapland, with special reference to the species regarded as specific to reindeer. Nord Vet Med 21:14–19
    [Google Scholar]
  58. Williams A. G., Coleman G. S. 1992 Metabolism of Entodiniomorphid Protozoa in the Rumen Protozoa New York: Springer; [CrossRef]
    [Google Scholar]
  59. Wright A.-D. G., Klieve A. V. 2011; Does the complexity of the rumen microbial ecology preclude methane mitigation?. Anim Feed Sci Technol 166-167:248–253 [View Article]
    [Google Scholar]
  60. Wright A.-D. G., Williams A. J., Winder B., Christophersen C. T., Rodgers S. L., Smith K. D. 2004; Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70:1263–1270 [View Article][PubMed]
    [Google Scholar]
  61. Wright A.-D. G., Ma X., Obispo N. E. 2008; Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela. Microb Ecol 56:390–394 [View Article][PubMed]
    [Google Scholar]
  62. Wright A.-D. G., Northwood K. S., Obispo N. E. 2009; Rumen-like methanogens identified from the crop of the folivorous South American bird, the hoatzin (Opisthocomus hoazin). ISME J 3:1120–1126 [View Article][PubMed]
    [Google Scholar]
  63. Zhou M., Hernandez-Sanabria E., Guan L. L. 2010; Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Appl Environ Microbiol 76:3776–3786 [View Article][PubMed]
    [Google Scholar]
  64. Ishaq, S. L., Sundset, M. A., Crouse, J. & Wright, A.-D. G. Sequence Read Archive PRJNA281249 (2015).
  65. Ishaq, S. L., Sundset, M. A., Crouse, J. & Wright, A.-D. G. Sequence Read Archive PRJNA281109 (2015).
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000034
Loading
/content/journal/mgen/10.1099/mgen.0.000034
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error