1887

Abstract

Recent development of CRISPR-Cas9 genome editing has enabled highly efficient and versatile manipulation of a variety of organisms and adaptation of the CRISPR-Cas9 system to eukaryotic pathogens has opened new avenues for studying these otherwise hard to manipulate organisms. Here we describe a webtool, Eukaryotic Pathogen gRNA Design Tool (EuPaGDT; available at http://grna.ctegd.uga.edu), which identifies guide RNA (gRNA) in input gene(s) to guide users in arriving at well-informed and appropriate gRNA design for many eukaryotic pathogens. Flexibility in gRNA design, accommodating unique eukaryotic pathogen (gene and genome) attributes and high-throughput gRNA design are the main features that distinguish EuPaGDT from other gRNA design tools. In addition to employing an array of known principles to score and rank gRNAs, EuPaGDT implements an effective on-target search algorithm to identify gRNA targeting multi-gene families, which are highly represented in these pathogens and play important roles in host–pathogen interactions. EuPaGDT also identifies and scores microhomology sequences flanking each gRNA targeted cut-site; these sites are often essential for the microhomology-mediated end joining process used for double-stranded break repair in these organisms. EuPaGDT also assists users in designing single-stranded oligonucleotides for homology directed repair. In batch processing mode, EuPaGDT is able to process genome-scale sequences, enabling preparation of gRNA libraries for large-scale screening projects.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the source is credited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000033
2015-10-13
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/mgen/1/4/mgen000033.html?itemId=/content/journal/mgen/10.1099/mgen.0.000033&mimeType=html&fmt=ahah

References

  1. Bae S., Kweon J., Kim H. S., Kim J. S. 2014; Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11:705–706 [View Article][PubMed]
    [Google Scholar]
  2. Bialk P., Rivera-Torres N., Strouse B., Kmiec E. B. 2015; Regulation of gene editing activity directed by single-stranded oligonucleotides and CRISPR/Cas9 systems. PLoS One 10:e0129308 [View Article][PubMed]
    [Google Scholar]
  3. Bogenhagen D. F., Brown D. D. 1981; Nucleotide sequences in Xenopus 5S DNA required for transcription termination. Cell 24:261–270 [View Article][PubMed]
    [Google Scholar]
  4. Brunet E., Simsek D., Tomishima M., DeKelver R., Choi V. M., Gregory P., Urnov F., Weinstock D. M., Jasin M. 2009; Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci U S A 106:10620–10625 [View Article][PubMed]
    [Google Scholar]
  5. Cho S. W., Kim S., Kim Y., Kweon J., Kim H. S., Bae S., Kim J. S. 2014; Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141 [View Article][PubMed]
    [Google Scholar]
  6. Cornish-Bowden A. 1985; Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. Nucleic Acids Res 13:3021–3030 [View Article][PubMed]
    [Google Scholar]
  7. Doench J. G., Hartenian E., Graham D. B., Tothova Z., Hegde M., Smith I., Sullender M., Ebert B. L., Xavier R. J., Root D. E. 2014; Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267 [View Article][PubMed]
    [Google Scholar]
  8. Fu Y., Sander J. D., Reyon D., Cascio V. M., Joung J. K. 2014; Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284 [View Article][PubMed]
    [Google Scholar]
  9. Ghorbal M., Gorman M., Macpherson C. R., Martins R. M., Scherf A., Lopez-Rubio J. J. 2014; Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32:819–821 [View Article][PubMed]
    [Google Scholar]
  10. Glover L., Jun J., Horn D. 2011; Microhomology-mediated deletion and gene conversion in African trypanosomes. Nucleic Acids Res 39:1372–1380 [View Article][PubMed]
    [Google Scholar]
  11. Kleinstiver B. P., Prew M. S., Tsai S. Q., Topkar V. V., Nguyen N. T., Zheng Z., Gonzales A. P., Li Z., Peterson R. T., other authors. 2015; Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485 [View Article][PubMed]
    [Google Scholar]
  12. Lee M. C., Fidock D. A. 2014; CRISPR-mediated genome editing of Plasmodium falciparum malaria parasites. Genome Med 6:63 [View Article][PubMed]
    [Google Scholar]
  13. Lee H. J., Kim E., Kim J. S. 2010; Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res 20:81–89 [View Article][PubMed]
    [Google Scholar]
  14. Peng D., Kurup S. P., Yao P. Y., Minning T. A., Tarleton R. L. 2015; CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi . MBio 6:e02097–14[PubMed]
    [Google Scholar]
  15. Shen B., Brown K. M., Lee T. D., Sibley L. D. 2014; Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio 5:e01114–14 [View Article][PubMed]
    [Google Scholar]
  16. Sidik S. M., Hackett C. G., Tran F., Westwood N. J., Lourido S. 2014; Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9. PLoS One 9:e100450 [View Article][PubMed]
    [Google Scholar]
  17. Sollelis L., Ghorbal M., MacPherson C. R., Martins R. M., Kuk N., Crobu L., Bastien P., Scherf A., Lopez-Rubio J. J., other authors. 2015; First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell Microbiol 17:1405–1412 [CrossRef]
    [Google Scholar]
  18. Wagner J. C., Platt R. J., Goldfless S. J., Zhang F., Niles J. C. 2014; Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum . Nat Methods 11:915–918 [View Article][PubMed]
    [Google Scholar]
  19. Wang H., Yang H., Shivalila C. S., Dawlaty M. M., Cheng A. W., Zhang F., Jaenisch R. 2013; One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918 [View Article][PubMed]
    [Google Scholar]
  20. Wu Y., Liang D., Wang Y., Bai M., Tang W., Bao S., Yan Z., Li D., Li J. 2013; Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662 [View Article][PubMed]
    [Google Scholar]
  21. Yang L., Guell M., Byrne S., Yang J. L., De Los Angeles A., Mali P., Aach J., Kim-Kiselak C., Briggs A. W., other authors. 2013; Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41:9049–9061 [View Article][PubMed]
    [Google Scholar]
  22. Zhang C., Xiao B., Jiang Y., Zhao Y., Li Z., Gao H., Ling Y., Wei J., Li S., other authors. 2014; Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. MBio 5:e01414–14 [View Article][PubMed]
    [Google Scholar]
  23. Zheng J., Jia H., Zheng Y. 2014; Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9. International journal for parasitology
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000033
Loading
/content/journal/mgen/10.1099/mgen.0.000033
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error