1887

Abstract

Uropathogenic (UPEC) is the causative agent of urinary tract infections. Nitric oxide (NO) is a toxic water-soluble gas that is encountered by UPEC in the urinary tract. Therefore, UPEC probably requires mechanisms to detoxify NO in the host environment. Thus far, flavohaemoglobin (Hmp), an NO denitrosylase, is the only demonstrated NO detoxification system in UPEC. Here we show that, in strain CFT073, the NADH-dependent NO reductase flavorubredoxin (FlRd) also plays a major role in NO scavenging. We generated a mutant that lacks all known and candidate NO detoxification pathways (Hmp, FlRd and the respiratory nitrite reductase, NrfA). When grown and assayed anaerobically, this mutant expresses an NO-inducible NO scavenging activity, pointing to the existence of a novel detoxification mechanism. Expression of this activity is inducible by both NO and nitrate, and the enzyme is membrane-associated. Genome-wide transcriptional profiling of UPEC grown under anaerobic conditions in the presence of nitrate (as a source of NO) highlighted various aspects of the response of the pathogen to nitrate and NO. Several virulence-associated genes are upregulated, suggesting that host-derived NO is a potential regulator of UPEC virulence. Chromatin immunoprecipitation and sequencing was used to evaluate the NsrR regulon in CFT073. We identified 49 NsrR binding sites in promoter regions in the CFT073 genome, 29 of which were not previously identified in K-12. NsrR may regulate some CFT073 genes that do not have homologues in K-12.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000031
2015-10-13
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/mgen/1/4/mgen000031.html?itemId=/content/journal/mgen/10.1099/mgen.0.000031&mimeType=html&fmt=ahah

References

  1. Alefounder P. R., Ferguson S. J.. 1980; The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen in Paracoccus denitrificans . Biochem J192:231–240 [CrossRef][PubMed]
    [Google Scholar]
  2. Alteri C. J., Smith S. N., Mobley H. L.. 2009; Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog5:e1000448 [CrossRef][PubMed]
    [Google Scholar]
  3. Bailey T. L., Elkan C.. 1994; Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol2:28–36[PubMed]
    [Google Scholar]
  4. Bodenmiller D. M., Spiro S.. 2006; The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol188:874–881 [CrossRef][PubMed]
    [Google Scholar]
  5. Bower J. M., Mulvey M. A.. 2006; Polyamine-mediated resistance of uropathogenic Escherichia coli to nitrosative stress. J Bacteriol188:928–933 [CrossRef][PubMed]
    [Google Scholar]
  6. Bower J. M., Gordon-Raagas H. B., Mulvey M. A.. 2009; Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. Infect Immun77:2104–2112 [CrossRef][PubMed]
    [Google Scholar]
  7. Branchu P., Matrat S., Vareille M., Garrivier A., Durand A., Crépin S., Harel J., Jubelin G., Gobert A. P.. 2014; NsrR, GadE, and GadX interplay in repressing expression of the Escherichia coli O157:H7 LEE pathogenicity island in response to nitric oxide. PLoS Pathog10:e1003874 [CrossRef][PubMed]
    [Google Scholar]
  8. Bryan A., Roesch P., Davis L., Moritz R., Pellett S., Welch R. A.. 2006; Regulation of type 1 fimbriae by unlinked FimB- and FimE-like recombinases in uropathogenic Escherichia coli strain CFT073. Infect Immun74:1072–1083 [CrossRef][PubMed]
    [Google Scholar]
  9. Clarke T. A., Mills P. C., Poock S. R., Butt J. N., Cheesman M. R., Cole J. A., Hinton J. C., Hemmings A. M., Kemp G., other authors. 2008; Escherichia coli cytochrome c nitrite reductase NrfA. Methods Enzymol437:63–77 [CrossRef][PubMed]
    [Google Scholar]
  10. Cole J. A.. 2012; Legless pathogens: how bacterial physiology provides the key to understanding pathogenicity. Microbiology158:1402–1413 [CrossRef][PubMed]
    [Google Scholar]
  11. Connell I., Agace W., Klemm P., Schembri M., Mărild S., Svanborg C.. 1996; Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A93:9827–9832 [CrossRef][PubMed]
    [Google Scholar]
  12. Constantinidou C., Hobman J. L., Griffiths L., Patel M. D., Penn C. W., Cole J. A., Overton T. W.. 2006; A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem281:4802–4815 [CrossRef][PubMed]
    [Google Scholar]
  13. Corker H., Poole R. K.. 2003; Nitric oxide formation by Escherichia coli. Dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol Chem278:31584–31592 [CrossRef][PubMed]
    [Google Scholar]
  14. Cruz-Ramos H., Crack J., Wu G., Hughes M. N., Scott C., Thomson A. J., Green J., Poole R. K.. 2002; NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J21:3235–3244 [CrossRef][PubMed]
    [Google Scholar]
  15. D'Autréaux B., Touati D., Bersch B., Latour J. M., Michaud-Soret I.. 2002; Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc Natl Acad Sci U S A99:16619–16624 [CrossRef][PubMed]
    [Google Scholar]
  16. D'Autréaux B., Tucker N. P., Dixon R., Spiro S.. 2005; A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature437:769–772 [CrossRef][PubMed]
    [Google Scholar]
  17. da Costa P. N., Teixeira M., Saraiva L. M.. 2003; Regulation of the flavorubredoxin nitric oxide reductase gene in Escherichia coli: nitrate repression, nitrite induction, and possible post-transcription control. FEMS Microbiol Lett218:385–393 [CrossRef][PubMed]
    [Google Scholar]
  18. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  19. Davidson A. L., Dassa E., Orelle C., Chen J.. 2008; Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev72:317–364 [CrossRef][PubMed]
    [Google Scholar]
  20. Efromovich S., Grainger D., Bodenmiller D., Spiro S.. 2008; Genome-wide identification of binding sites for the nitric oxide-sensitive transcriptional regulator NsrR. Methods Enzymol437:211–233 [CrossRef][PubMed]
    [Google Scholar]
  21. Fang F. C.. 1997; Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest99:2818–2825 [CrossRef][PubMed]
    [Google Scholar]
  22. Fang F. C., Vazquez-Torres A.. 2002; Nitric oxide production by human macrophages: there's NO doubt about it. Am J Physiol Lung Cell Mol Physiol282:L941–L943 [CrossRef][PubMed]
    [Google Scholar]
  23. Farris M., Grant A., Richardson T. B., O'Connor C. D.. 1998; BipA: a tyrosine-phosphorylated GTPase that mediates interactions between enteropathogenic Escherichia coli (EPEC) and epithelial cells. Mol Microbiol28:265–279 [CrossRef][PubMed]
    [Google Scholar]
  24. Filenko N., Spiro S., Browning D. F., Squire D., Overton T. W., Cole J., Constantinidou C.. 2007; The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J Bacteriol189:4410–4417 [CrossRef][PubMed]
    [Google Scholar]
  25. Gardner P. R.. 2005; Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases. J Inorg Biochem99:247–266 [CrossRef][PubMed]
    [Google Scholar]
  26. Gardner A. M., Gardner P. R.. 2002; Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric oxide-scavenging activity. J Biol Chem277:8166–8171 [CrossRef][PubMed]
    [Google Scholar]
  27. Gardner A. M., Helmick R. A., Gardner P. R.. 2002; Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli . J Biol Chem277:8172–8177 [CrossRef][PubMed]
    [Google Scholar]
  28. Godaly G., Bergsten G., Hang L., Fischer H., Frendéus B., Lundstedt A. C., Samuelsson M., Samuelsson P., Svanborg C.. 2001; Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J Leukoc Biol69:899–906[PubMed]
    [Google Scholar]
  29. Gomes C. M., Vicente J. B., Wasserfallen A., Teixeira M.. 2000; Spectroscopic studies and characterization of a novel electron-transfer chain from Escherichia coli involving a flavorubredoxin and its flavoprotein reductase partner. Biochemistry39:16230–16237 [CrossRef][PubMed]
    [Google Scholar]
  30. Gomes C. M., Giuffrè A., Forte E., Vicente J. B., Saraiva L. M., Brunori M., Teixeira M.. 2002; A novel type of nitric-oxide reductase. Escherichia coli flavorubredoxin. J Biol Chem277:25273–25276 [CrossRef][PubMed]
    [Google Scholar]
  31. Green L. C., Ruiz de Luzuriaga K., Wagner D. A., Rand W., Istfan N., Young V. R., Tannenbaum S. R.. 1981; Nitrate biosynthesis in man. Proc Natl Acad Sci U S A78:7764–7768 [CrossRef][PubMed]
    [Google Scholar]
  32. Gunsalus R. P.. 1992; Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes. J Bacteriol174:7069–7074[PubMed]
    [Google Scholar]
  33. Guyer D. M., Radulovic S., Jones F. E., Mobley H. L.. 2002; Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect Immun70:4539–4546 [CrossRef][PubMed]
    [Google Scholar]
  34. Hagan E. C., Lloyd A. L., Rasko D. A., Faerber G. J., Mobley H. L.. 2010; Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog6:e1001187 [CrossRef][PubMed]
    [Google Scholar]
  35. Haugen B. J., Pellett S., Redford P., Hamilton H. L., Roesch P. L., Welch R. A.. 2007; In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA . Infect Immun75:278–289 [CrossRef][PubMed]
    [Google Scholar]
  36. Hausladen A., Privalle C. T., Keng T., DeAngelo J., Stamler J. S.. 1996; Nitrosative stress: activation of the transcription factor OxyR. Cell86:719–729 [CrossRef][PubMed]
    [Google Scholar]
  37. Hausladen A., Gow A., Stamler J. S.. 2001; Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen. Proc Natl Acad Sci U S A98:10108–10112 [CrossRef][PubMed]
    [Google Scholar]
  38. Hertz G. Z., Stormo G. D.. 1999; Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics15:563–577 [CrossRef][PubMed]
    [Google Scholar]
  39. Huang D. W., Sherman B. T., Tan Q., Collins J. R., Alvord W. G., Roayaei J., Stephens R., Baseler M. W., Lane H. C., Lempicki R. A.. 2007; The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol8:R183 [CrossRef][PubMed]
    [Google Scholar]
  40. Hutchings M. I., Mandhana N., Spiro S.. 2002; The NorR protein of Escherichia coli activates expression of the flavorubredoxin gene norV in response to reactive nitrogen species. J Bacteriol184:4640–4643 [CrossRef][PubMed]
    [Google Scholar]
  41. Hyduke D. R., Jarboe L. R., Tran L. M., Chou K. J., Liao J. C.. 2007; Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli . Proc Natl Acad Sci U S A104:8484–8489 [CrossRef][PubMed]
    [Google Scholar]
  42. Jann K., Jann B.. 1992; Capsules of Escherichia coli, expression and biological significance. Can J Microbiol38:705–710 [CrossRef][PubMed]
    [Google Scholar]
  43. Ji X. B., Hollocher T. C.. 1988; Reduction of nitrite to nitric oxide by enteric bacteria. Biochem Biophys Res Commun157:106–108 [CrossRef][PubMed]
    [Google Scholar]
  44. Justino M. C., Vicente J. B., Teixeira M., Saraiva L. M.. 2005; New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J Biol Chem280:2636–2643 [CrossRef][PubMed]
    [Google Scholar]
  45. Kaboré A. F., Simard M., Bergeron M. G.. 1999; Local production of inflammatory mediators in an experimental model of acute obstructive pyelonephritis. J Infect Dis179:1162–1172 [CrossRef][PubMed]
    [Google Scholar]
  46. Kim Y. M., Bergonia H. A., Müller C., Pitt B. R., Watkins W. D., Lancaster J. R. Jr. 1995; Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem270:5710–5713 [CrossRef][PubMed]
    [Google Scholar]
  47. Lane M. C., Lockatell V., Monterosso G., Lamphier D., Weinert J., Hebel J. R., Johnson D. E., Mobley H. L.. 2005; Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun73:7644–7656 [CrossRef][PubMed]
    [Google Scholar]
  48. Langmead B., Trapnell C., Pop M., Salzberg S. L.. 2009; Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol10:R25 [CrossRef][PubMed]
    [Google Scholar]
  49. Leng N., Dawson J. A., Thomson J. A., Ruotti V., Rissman A. I., Smits B. M., Haag J. D., Gould M. N., Stewart R. M., Kendziorski C.. 2013; EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics29:1035–1043 [CrossRef][PubMed]
    [Google Scholar]
  50. Lewis V. G., Ween M. P., McDevitt C. A.. 2012; The role of ATP-binding cassette transporters in bacterial pathogenicity. Protoplasma249:919–942 [CrossRef][PubMed]
    [Google Scholar]
  51. Li B., Dewey C. N.. 2011; RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics12:323 [CrossRef][PubMed]
    [Google Scholar]
  52. Lidder S., Webb A. J.. 2013; Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate–nitrite–nitric oxide pathway. Br J Clin Pharmacol75:677–696[PubMed]
    [Google Scholar]
  53. Lin H. Y., Bledsoe P. J., Stewart V.. 2007; Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen-responsive regulator Fnr in Escherichia coli K-12. J Bacteriol189:7539–7548 [CrossRef][PubMed]
    [Google Scholar]
  54. Lundberg J. O., Ehrén I., Jansson O., Adolfsson J., Lundberg J. M., Weitzberg E., Alving K., Wiklund N. P.. 1996; Elevated nitric oxide in the urinary bladder in infectious and noninfectious cystitis. Urology48:700–702 [CrossRef][PubMed]
    [Google Scholar]
  55. Mills P. C., Rowley G., Spiro S., Hinton J. C., Richardson D. J.. 2008; A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology154:1218–1228 [CrossRef][PubMed]
    [Google Scholar]
  56. Mobley H. L., Green D. M., Trifillis A. L., Johnson D. E., Chippendale G. R., Lockatell C. V., Jones B. D., Warren J. W.. 1990; Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun58:1281–1289[PubMed]
    [Google Scholar]
  57. Mowat C. G., Gazur B., Campbell L. P., Chapman S. K.. 2010; Flavin-containing heme enzymes. Arch Biochem Biophys493:37–52 [Mills et al., 2008 0002] [CrossRef]
    [Google Scholar]
  58. Mukhopadhyay P., Zheng M., Bedzyk L. A., LaRossa R. A., Storz G.. 2004; Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci U S A101:745–750 [CrossRef][PubMed]
    [Google Scholar]
  59. Myers K. S., Yan H., Ong I. M., Chung D., Liang K., Tran F., Keleş S., Landick R., Kiley P. J.. 2013; Genome-scale analysis of Escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet9:e1003565 [CrossRef][PubMed]
    [Google Scholar]
  60. Mysorekar I. U., Mulvey M. A., Hultgren S. J., Gordon J. I.. 2002; Molecular regulation of urothelial renewal and host defenses during infection with uropathogenic Escherichia coli . J Biol Chem277:7412–7419 [CrossRef][PubMed]
    [Google Scholar]
  61. Neidhardt F. C., Bloch P. L., Smith D. F.. 1974; Culture medium for enterobacteria. J Bacteriol119:736–747[PubMed]
    [Google Scholar]
  62. Partridge J. D., Bodenmiller D. M., Humphrys M. S., Spiro S.. 2009; NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol73:680–694 [CrossRef][PubMed]
    [Google Scholar]
  63. Poljakovic M., Svensson M. L., Svanborg C., Johansson K., Larsson B., Persson K.. 2001; Escherichia coli-induced inducible nitric oxide synthase and cyclooxygenase expression in the mouse bladder and kidney. Kidney Int59:893–904 [CrossRef][PubMed]
    [Google Scholar]
  64. Pomposiello P. J., Demple B.. 2001; Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol19:109–114 [CrossRef][PubMed]
    [Google Scholar]
  65. Poock S. R., Leach E. R., Moir J. W., Cole J. A., Richardson D. J.. 2002; Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli . J Biol Chem277:23664–23669 [CrossRef][PubMed]
    [Google Scholar]
  66. Prohl C., Wackwitz B., Vlad D., Unden G.. 1998; Functional citric acid cycle in an arcA mutant of Escherichia coli during growth with nitrate under anoxic conditions. Arch Microbiol170:1–7 [CrossRef][PubMed]
    [Google Scholar]
  67. Pullan S. T., Gidley M. D., Jones R. A., Barrett J., Stevanin T. M., Read R. C., Green J., Poole R. K.. 2007; Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation. J Bacteriol189:1845–1855 [CrossRef][PubMed]
    [Google Scholar]
  68. Radomski J. L., Palmiri C., Hearn W. L.. 1978; Concentrations of nitrate in normal human urine and the effect of nitrate ingestion. Toxicol Appl Pharmacol45:63–68 [CrossRef][PubMed]
    [Google Scholar]
  69. Ren B., Zhang N., Yang J., Ding H.. 2008; Nitric oxide-induced bacteriostasis and modification of iron–sulphur proteins in Escherichia coli . Mol Microbiol70:953–964[PubMed]
    [Google Scholar]
  70. Rodionov D. A., Dubchak I. L., Arkin A. P., Alm E. J., Gelfand M. S.. 2005; Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLOS Comput Biol1:e55 [CrossRef][PubMed]
    [Google Scholar]
  71. Roos V., Klemm P.. 2006; Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract. Infect Immun74:3565–3575 [CrossRef][PubMed]
    [Google Scholar]
  72. Roos V., Nielsen E. M., Klemm P.. 2006; Asymptomatic bacteriuria Escherichia coli strains: adhesins, growth and competition. FEMS Microbiol Lett262:22–30 [CrossRef][PubMed]
    [Google Scholar]
  73. Rowe S., Hodson N., Griffiths G., Roberts I. S.. 2000; Regulation of the Escherichia coli K5 capsule gene cluster: evidence for the roles of H-NS, BipA, and integration host factor in regulation of group 2 capsule gene clusters in pathogenic E. coli . J Bacteriol182:2741–2745 [CrossRef][PubMed]
    [Google Scholar]
  74. Seo S. W., Kim D., Latif H., O'Brien E. J., Szubin R., Palsson B. O.. 2014; Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli . Nat Commun5:4910 [CrossRef][PubMed]
    [Google Scholar]
  75. Silaghi-Dumitrescu R., Coulter E. D., Das A., Ljungdahl L. G., Jameson G. N., Huynh B. H., Kurtz D. M. Jr. 2003; A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity. Biochemistry42:2806–2815 [CrossRef][PubMed]
    [Google Scholar]
  76. Silaghi-Dumitrescu R., Ng K. Y., Viswanathan R., Kurtz D. M. Jr. 2005; A flavo-diiron protein from Desulfovibrio vulgaris with oxidase and nitric oxide reductase activities. Evidence for an in vivo nitric oxide scavenging function. Biochemistry44:3572–3579 [CrossRef][PubMed]
    [Google Scholar]
  77. Smith S. D., Wheeler M. A., Foster H. E. Jr, Weiss R. M.. 1996; Urinary nitric oxide synthase activity and cyclic GMP levels are decreased with interstitial cystitis and increased with urinary tract infections. J Urol155:1432–1435 [CrossRef][PubMed]
    [Google Scholar]
  78. Snyder J. A., Haugen B. J., Buckles E. L., Lockatell C. V., Johnson D. E., Donnenberg M. S., Welch R. A., Mobley H. L.. 2004; Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun72:6373–6381 [CrossRef][PubMed]
    [Google Scholar]
  79. Spiro S.. 2007; Regulators of bacterial responses to nitric oxide. FEMS Microbiol Rev31:193–211 [CrossRef][PubMed]
    [Google Scholar]
  80. Spiro S.. 2011; Nitric oxide stress in Escherichia coli and Salmonella . Stress Response in Pathogenic Bacteria48–67Edited by Kidd S.. Wallingford: CABI;[PubMed][CrossRef]
    [Google Scholar]
  81. Stern A. M., Hay A. J., Liu Z., Desland F. A., Zhang J., Zhong Z., Zhu J.. 2012; The NorR regulon is critical for Vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines. MBio3:e00013–12 [CrossRef][PubMed]
    [Google Scholar]
  82. Stevanin T. M., Ioannidis N., Mills C. E., Kim S. O., Hughes M. N., Poole R. K.. 2000; Flavohemoglobin Hmp affords inducible protection for Escherichia coli respiration, catalyzed by cytochromes bo’ or bd, from nitric oxide. J Biol Chem275:35868–35875 [CrossRef][PubMed]
    [Google Scholar]
  83. Stewart V.. 1993; Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli . Mol Microbiol9:425–434 [CrossRef][PubMed]
    [Google Scholar]
  84. Subashchandrabose S., Hazen T. H., Brumbaugh A. R., Himpsl S. D., Smith S. N., Ernst R. D., Rasko D. A., Mobley H. L.. 2014; Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc Natl Acad Sci U S A111:18327–18332 [CrossRef][PubMed]
    [Google Scholar]
  85. Sutherland P., McAlister-Henn L.. 1985; Isolation and expression of the Escherichia coli gene encoding malate dehydrogenase. J Bacteriol163:1074–1079[PubMed]
    [Google Scholar]
  86. Svensson L., Marklund B. I., Poljakovic M., Persson K.. 2006; Uropathogenic Escherichia coli and tolerance to nitric oxide: the role of flavohemoglobin. J Urol175:749–753 [CrossRef][PubMed]
    [Google Scholar]
  87. Svensson L., Poljakovic M., Säve S., Gilberthorpe N., Schön T., Strid S., Corker H., Poole R. K., Persson K.. 2010; Role of flavohemoglobin in combating nitrosative stress in uropathogenic Escherichia coli – implications for urinary tract infection. Microb Pathog49:59–66 [CrossRef][PubMed]
    [Google Scholar]
  88. Tucker N. P., D'Autréaux B., Studholme D. J., Spiro S., Dixon R.. 2004; DNA binding activity of the Escherichia coli nitric oxide sensor NorR suggests a conserved target sequence in diverse proteobacteria. J Bacteriol186:6656–6660 [CrossRef][PubMed]
    [Google Scholar]
  89. Tucker N. P., Le Brun N. E., Dixon R., Hutchings M. I.. 2010; There's NO stopping NsrR, a global regulator of the bacterial NO stress response. Trends Microbiol18:149–156 [CrossRef][PubMed]
    [Google Scholar]
  90. van Wonderen J. H., Burlat B., Richardson D. J., Cheesman M. R., Butt J. N.. 2008; The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli . J Biol Chem283:9587–9594 [CrossRef][PubMed]
    [Google Scholar]
  91. Vine C. E., Cole J. A.. 2011a; Nitrosative stress in Escherichia coli: reduction of nitric oxide. Biochem Soc Trans39:213–215 [CrossRef][PubMed]
    [Google Scholar]
  92. Vine C. E., Cole J. A.. 2011b; Unresolved sources, sinks, and pathways for the recovery of enteric bacteria from nitrosative stress. FEMS Microbiol Lett325:99–107 [CrossRef][PubMed]
    [Google Scholar]
  93. Welch R. A., Burland V., Plunkett G. III, Redford P., Roesch P., Rasko D., Buckles E. L., Liou S. R., Boutin A., other authors. 2002; Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli . Proc Natl Acad Sci U S A99:17020–17024 [CrossRef][PubMed]
    [Google Scholar]
  94. Wheeler M. A., Smith S. D., García-Cardeña G., Nathan C. F., Weiss R. M., Sessa W. C.. 1997; Bacterial infection induces nitric oxide synthase in human neutrophils. J Clin Invest99:110–116 [CrossRef][PubMed]
    [Google Scholar]
  95. Yu H., Sato E. F., Nagata K., Nishikawa M., Kashiba M., Arakawa T., Kobayashi K., Tamura T., Inoue M.. 1997; Oxygen-dependent regulation of the respiration and growth of Escherichia coli by nitric oxide. FEBS Lett409:161–165 [CrossRef][PubMed]
    [Google Scholar]
  96. Zhang Y., Liu T., Meyer C. A., Eeckhoute J., Johnson D. S., Bernstein B. E., Nusbaum C., Myers R. M., Brown M., other authors. 2008; Model-based analysis of ChIP-Seq (MACS). Genome Biol9:R137 [CrossRef][PubMed]
    [Google Scholar]
  97. Mehta, H.H., Liu, Y., Zhang, M.Q. & Spiro, S. Gene Expression Omnibus GSE69830 (2015).
  98. Mehta, H.H., Liu, Y., Zhang, M.Q. & Spiro, S. Gene Expression Omnibus GSE69829 (2015).
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000031
Loading
/content/journal/mgen/10.1099/mgen.0.000031
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error