1887

Abstract

is a common cause of food-borne gastroenteritis worldwide. Recent work defining the phylogeny of the genus subdivided into six distinct phylogroups. Here, we provide detailed analyses of the evolutionary processes leading to the emergence of these phylogroups. The dominant phylogroups isolated from human infections, PG3–5, show very little diversity at the sequence level, but do present marked patterns of gain and loss of functions, including those involved in pathogenicity and metabolism, including the acquisition of phylogroup-specific O-antigen loci. We tracked gene flow across the species in the core and accessory genome, and show that the non-pathogenic PG1 strains act as a reservoir for diversity, frequently acting as donors in recombination events. Analysis of the core and accessory genome also suggested that the different phylogroups may be ecologically separated, in contrast to the long-held belief of common shared ecological niches across the species.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000030
2015-09-29
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/mgen/1/3/mgen000030.html?itemId=/content/journal/mgen/10.1099/mgen.0.000030&mimeType=html&fmt=ahah

References

  1. Bengoechea J. A., Najdenski H., Skurnik M.. ( 2004;). Lipopolysaccharide O antigen status of Yersinia enterocolitica O : 8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. Mol Microbiol 52: 451–469 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bottone E. J.. ( 1999;). Yersinia enterocolitica: overview and epidemiologic correlates. Microbes Infect 1: 323–333 [CrossRef] [PubMed].
    [Google Scholar]
  3. Chain P. S. G., Carniel E., Larimer F. W., Lamerdin J., Stoutland P. O., Regala W. M., Georgescu A. M., Vergez L. M., Land M. L., other authors. ( 2004;). Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101: 13826–13831 [CrossRef] [PubMed].
    [Google Scholar]
  4. Chain P. S., Hu P., Malfatti S. A., Radnedge L., Larimer F., Vergez L. M., Worsham P., Chu M. C., Andersen G. L.. ( 2006;). Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen. J Bacteriol 188: 4453–4463 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honoré N., Garnier T., Churcher C., other authors. ( 2001;). Massive gene decay in the leprosy bacillus. Nature 409: 1007–1011 [CrossRef] [PubMed].
    [Google Scholar]
  6. Coleman M. L., Chisholm S. W.. ( 2010;). Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci U S A 107: 18634–18639 [CrossRef] [PubMed].
    [Google Scholar]
  7. Croucher N. J., Harris S. R., Fraser C., Quail M. A., Burton J., van der Linden M., McGee L., von Gottberg A., Song J. H., other authors. ( 2011;). Rapid pneumococcal evolution in response to clinical interventions. Science 331: 430–434 [CrossRef] [PubMed].
    [Google Scholar]
  8. de Been M., van Schaik W., Cheng L., Corander J., Willems R. J.. ( 2013;). Recent recombination events in the core genome are associated with adaptive evolution in Enterococcus faecium. Genome Biol Evol 5: 1524–1535 [CrossRef] [PubMed].
    [Google Scholar]
  9. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 [CrossRef] [PubMed].
    [Google Scholar]
  10. Fredriksson-Ahomaa M., Bjorkroth J., Hielm S., Korkeala H.. ( 2000;). Prevalence and characterization of pathogenic Yersinia enterocolitica in pig tonsils from different slaughterhouses. Food Microbiol 17: 93–101 [CrossRef]
    [Google Scholar]
  11. He M., Sebaihia M., Lawley T. D., Stabler R. A., Dawson L. F., Martin M. J., Holt K. E., Seth-Smith H. M., Quail M. A., other authors. ( 2010;). Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A 107: 7527–7532 [CrossRef] [PubMed].
    [Google Scholar]
  12. Holt K. E., Parkhill J., Mazzoni C. J., Roumagnac P., Weill F. X., Goodhead I., Rance R., Baker S., Maskell D. J., other authors. ( 2008;). High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 40: 987–993 [CrossRef] [PubMed].
    [Google Scholar]
  13. Koeppel A., Perry E. B., Sikorski J., Krizanc D., Warner A., Ward D. M., Rooney A. P., Brambilla E., Connor N., other authors. ( 2008;). Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci U S A 105: 2504–2509 [CrossRef] [PubMed].
    [Google Scholar]
  14. Langridge G. C., Fookes M., Connor T. R., Feltwell T., Feasey N., Parsons B. N., Seth-Smith H. M., Barquist L., Stedman A., other authors. ( 2015;). Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc Natl Acad Sci U S A 112: 863–868 [CrossRef] [PubMed].
    [Google Scholar]
  15. Luo C., Walk S. T., Gordon D. M., Feldgarden M., Tiedje J. M., Konstantinidis K. T.. ( 2011;). Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci U S A 108: 7200–7205 [CrossRef] [PubMed].
    [Google Scholar]
  16. Marttinen P., Hanage W. P., Croucher N. J., Connor T. R., Harris S. R., Bentley S. D., Corander J.. ( 2012;). Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res 40: e6 [CrossRef] [PubMed].
    [Google Scholar]
  17. McNally A., Cheasty T., Fearnley C., Dalziel R. W., Paiba G. A., Manning G., Newell D. G.. ( 2004;). Comparison of the biotypes of Yersinia enterocolitica isolated from pigs, cattle and sheep at slaughter and from humans with yersiniosis in Great Britain during 1999-2000. Lett Appl Microbiol 39: 103–108 [CrossRef] [PubMed].
    [Google Scholar]
  18. McNally A., Alhashash F., Collins M., Alqasim A., Paszckiewicz K., Weston V., Diggle M.. ( 2013a;). Genomic analysis of extra-intestinal pathogenic Escherichia coli urosepsis. Clin Microbiol Infect 19: E328–E334 [CrossRef] [PubMed].
    [Google Scholar]
  19. McNally A., Cheng L., Harris S. R., Corander J.. ( 2013b;). The evolutionary path to extraintestinal pathogenic, drug-resistant Escherichia coli is marked by drastic reduction in detectable recombination within the core genome. Genome Biol Evol 5: 699–710 [CrossRef] [PubMed].
    [Google Scholar]
  20. Page A. J., Cummins C. A., Hunt M., Wong V. K., Reuter S., Holden M. T. G., Fookes M., Keane J. A., Parkhill J.. ( 2015;).http://biorxiv.org/content/early/2015/05/13/019315 Roary: rapid large-scale prokaryote pan genome analysis.. .
  21. Parkhill J., Dougan G., James K. D., Thomson N. R., Pickard D., Wain J., Churcher C., Mungall K. L., Bentley S. D., other authors. ( 2001;). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413: 848–852 [CrossRef] [PubMed].
    [Google Scholar]
  22. Pinta E., Duda K. A., Hanuszkiewicz A., Salminen T. A., Bengoechea J. A., Hyytiäinen H., Lindner B., Radziejewska-Lebrecht J., Holst O., Skurnik M.. ( 2010;). Characterization of the six glycosyltransferases involved in the biosynthesis of Yersinia enterocolitica serotype O : 3 lipopolysaccharide outer core. J Biol Chem 285: 28333–28342 [CrossRef] [PubMed].
    [Google Scholar]
  23. Rasko D. A., Rosovitz M. J., Myers G. S. A., Mongodin E. F., Fricke W. F., Gajer P., Crabtree J., Sebaihia M., Thomson N. R., other authors. ( 2008;). The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190: 6881–6893 [CrossRef] [PubMed].
    [Google Scholar]
  24. Reuter S., Connor T. R., Barquist L., Walker D., Feltwell T., Harris S. R., Fookes M., Hall M. E., Petty N. K., other authors. ( 2014;). Parallel independent evolution of pathogenicity within the genus Yersinia. Proc Natl Acad Sci U S A 111: 6768–6773 [CrossRef] [PubMed].
    [Google Scholar]
  25. Sahl J. W., Johnson J. K., Harris A. D., Phillippy A. M., Hsiao W. W., Thom K. A., Rasko D. A.. ( 2011;). Genomic comparison of multi-drug resistant invasive and colonizing Acinetobacter baumannii isolated from diverse human body sites reveals genomic plasticity. BMC Genomics 12: 291 [CrossRef] [PubMed].
    [Google Scholar]
  26. Sahl J. W., Caporaso J. G., Rasko D. A., Keim P.. ( 2014;). The large-scale blast score ratio (ls-bsr) pipeline: a method to rapidly compare genetic content between bacterial genomes. PeerJ 2: e332 [CrossRef] [PubMed].
    [Google Scholar]
  27. Seemann T.. ( 2014;). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068–2069 [CrossRef] [PubMed].
    [Google Scholar]
  28. Shapiro B. J., Polz M. F.. ( 2014;). Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol 22: 235–247 [CrossRef] [PubMed].
    [Google Scholar]
  29. Shapiro B. J., Friedman J., Cordero O. X., Preheim S. P., Timberlake S. C., Szabó G., Polz M. F., Alm E. J.. ( 2012;). Population genomics of early events in the ecological differentiation of bacteria. Science 336: 48–51 [CrossRef] [PubMed].
    [Google Scholar]
  30. Sheppard S. K., Colles F. M., McCarthy N. D., Strachan N. J., Ogden I. D., Forbes K. J., Dallas J. F., Maiden M. C.. ( 2011;). Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Mol Ecol 20: 3484–3490 [CrossRef] [PubMed].
    [Google Scholar]
  31. Sheppard S. K., Cheng L., Méric G., de Haan C. P., Llarena A. K., Marttinen P., Vidal A., Ridley A., Clifton-Hadley F., other authors. ( 2014;). Cryptic ecology among host generalist Campylobacter jejuni in domestic animals. Mol Ecol 23: 2442–2451 [CrossRef] [PubMed].
    [Google Scholar]
  32. Stamatakis A., Ludwig T., Meier H.. ( 2005;). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463 [CrossRef] [PubMed].
    [Google Scholar]
  33. Valentin-Weigand P., Heesemann J., Dersch P.. ( 2014;). Unique virulence properties of Yersinia enterocolitica O : 3 - an emerging zoonotic pathogen using pigs as preferred reservoir host. Int J Med Microbiol 304: 824–834 [CrossRef] [PubMed].
    [Google Scholar]
  34. Willems R. J. L., Top J., van Schaik W., Leavis H., Bonten M., Sirén J., Hanage W. P., Corander J.. ( 2012;). Restricted gene flow among hospital subpopulations of Enterococcus faecium. MBio 3: e00151–e00112 [CrossRef] [PubMed].
    [Google Scholar]
  35. Zerbino D. R., Birney E.. ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000030
Loading
/content/journal/mgen/10.1099/mgen.0.000030
Loading

Data & Media loading...

Supplementary Data



PDF

Supplementary Data



PDF

Supplementary Data



Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error