1887

Abstract

Serotype 1 is a leading cause of invasive pneumococcal disease (IPD) worldwide, with the highest burden in developing countries. We report the whole-genome sequencing analysis of 448 serotype 1 isolates from 27 countries worldwide (including 11 in Africa). The global serotype 1 population shows a strong phylogeographic structure at the continental level, and within Africa there is further region-specific structure. Our results demonstrate that region-specific diversification within Africa has been driven by limited cross-region transfer events, genetic recombination and antimicrobial selective pressure. Clonal replacement of the dominant serotype 1 clones circulating within regions is uncommon; however, here we report on the accessory gene content that has contributed to a rare clonal replacement event of ST3081 with ST618 as the dominant cause of IPD in the Gambia.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the source is credited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000027
2015-08-03
2021-12-08
Loading full text...

Full text loading...

/deliver/fulltext/mgen/1/2/mgen000027.html?itemId=/content/journal/mgen/10.1099/mgen.0.000027&mimeType=html&fmt=ahah

References

  1. Antonio M., Hakeem I., Awine T., Secka O., Sankareh K., Nsekpong D., Lahai G., Akisanya A., Egere U., other authors. 2008; Seasonality and outbreak of a predominant Streptococcus pneumoniae serotype 1 clone from The Gambia: expansion of ST217 hypervirulent clonal complex in West Africa. BMC Microbiol 8:198 [View Article][PubMed]
    [Google Scholar]
  2. Bentley S.D., Aanensen D.M., Mavroidi A., Saunders D., Rabbinowitsch E., Collins M., Donohoe K., Harris D., Murphy L., other authors. 2006; Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2:e31 [View Article][PubMed]
    [Google Scholar]
  3. Blumental S., Moïsi J.C., Roalfe L., Zancolli M., Johnson M., Burbidge P., Borrow R., Yaro S., Mueller J.E., other authors. 2015; Streptococcus pneumoniae serotype 1 burden in the African meningitis belt: exploration of functionality in specific antibodies. Clin Vaccine Immunol 22:404–412 [View Article]
    [Google Scholar]
  4. Boetzer M., Henkel C.V., Jansen H.J., Butler D., Pirovano W. 2011; Scaffolding pre-assembled contigs using sspace. Bioinformatics 27:578–579 [View Article][PubMed]
    [Google Scholar]
  5. Brueggemann A.B., Spratt B.G. 2003; Geographic distribution and clonal diversity of Streptococcus pneumoniae serotype 1 isolates. J Clin Microbiol 41:4966–4970 [View Article][PubMed]
    [Google Scholar]
  6. Brueggemann A.B., Griffiths D.T., Meats E., Peto T., Crook D.W., Spratt B.G. 2003; Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J Infect Dis 187:1424–1432 [View Article][PubMed]
    [Google Scholar]
  7. Chalker A.F., Lupas A., Ingraham K., So C.Y., Lunsford R.D., Li T., Bryant A., Holmes D.J., Marra A., other authors. 2000; Genetic characterization of gram-positive homologs of the XerCD site-specific recombinases. J Mol Microbiol Biotechnol 2:225–233[PubMed]
    [Google Scholar]
  8. Chan P.F., O'Dwyer K.M., Palmer L.M., Ambrad J.D., Ingraham K.A., So C., Lonetto M.A., Biswas S., Rosenberg M., other authors. 2003; Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of-action studies in Streptococcus pneumoniae . J Bacteriol 185:2051–2058 [View Article][PubMed]
    [Google Scholar]
  9. Chewapreecha C., Harris S.R., Croucher N.J., Turner C., Marttinen P., Cheng L., Pessia A., Aanensen D.M., Mather A.E., other authors. 2014; Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet 46:305–309 [View Article][PubMed]
    [Google Scholar]
  10. Cornick J.E., Bentley S.D. 2012; Streptococcus pneumoniae: the evolution of antimicrobial resistance to beta-lactams, fluoroquinolones and macrolides. Microbes Infect 14:573–583 [View Article][PubMed]
    [Google Scholar]
  11. Cornick J.E., Harris S.R., Parry C.M., Moore M.J., Jassi C., Kamng'ona A., Kulohoma B., Heyderman R.S., Bentley S.D., Everett D.B. 2014; Genomic identification of a novel co-trimoxazole resistance genotype and its prevalence amongst Streptococcus pneumoniae in Malawi. J Antimicrob Chemother 69:368–374[PubMed] [CrossRef]
    [Google Scholar]
  12. Croucher N.J., Harris S.R., Fraser C., Quail M.A., Burton J., van der Linden M., McGee L., von Gottberg A., Song J.H., other authors. 2011; Rapid pneumococcal evolution in response to clinical interventions. Science 331:430–434 [View Article][PubMed]
    [Google Scholar]
  13. Croucher N.J., Finkelstein J.A., Pelton S.I., Mitchell P.K., Lee G.M., Parkhill J., Bentley S.D., Hanage W.P., Lipsitch M. 2013; Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet 45:656–663 [View Article][PubMed]
    [Google Scholar]
  14. Croucher N.J., Page A.J., Connor T.R., Delaney A.J., Keane J.A., Bentley S.D., Parkhill J., Harris S.R. 2015; Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res Nucleic Acids Res 43:e15[PubMed] [CrossRef]
    [Google Scholar]
  15. Cutts F.T., Zaman S.M.A., Enwere G., Jaffar S., Levine O.S., Okoko J.B., Oluwalana C., Vaughan A., Obaro S.K., other authors. 2005; Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: randomised, double-blind, placebo-controlled trial. Lancet 365:1139–1146 [View Article][PubMed]
    [Google Scholar]
  16. Dagan R., Gradstein S., Belmaker I., Porat N., Siton Y., Weber G., Janco J., Yagupsky P. 2000; An outbreak of Streptococcus pneumoniae serotype 1 in a closed community in southern Israel. Clin Infect Dis 30:319–321 [View Article][PubMed]
    [Google Scholar]
  17. Delcher A.L., Harmon D., Kasif S., White O., Salzberg S.L. 1999; Improved microbial gene identification with glimmer. Nucleic Acids Res 27:4636–4641 [View Article][PubMed]
    [Google Scholar]
  18. Drummond A.J., Suchard M.A., Xie D., Rambaut A. 2012; Bayesian phylogenetics with BEAUti and the beast 1.7. Mol Biol Evol 29:1969–1973 [View Article][PubMed]
    [Google Scholar]
  19. Embry A., Hinojosa E., Orihuela C.J. 2007; Regions of Diversity 8, 9 and 13 contribute to Streptococcus pneumoniae virulence. BMC Microbiol 7:80 [View Article][PubMed]
    [Google Scholar]
  20. Everett D.B., Mukaka M., Denis B., Gordon S.B., Carrol E.D., van Oosterhout J.J., Molyneux E.M., Molyneux M., French N., Heyderman R.S. 2011; Ten years of surveillance for invasive Streptococcus pneumoniae during the era of antiretroviral scale-up and cotrimoxazole prophylaxis in Malawi. PLoS One 6:e17765 [View Article][PubMed]
    [Google Scholar]
  21. Harboe Z.B., Benfield T.L., Valentiner-Branth P., Hjuler T., Lambertsen L., Kaltoft M., Krogfelt K., Slotved H.C., Christensen J.J., Konradsen H.B. 2010; Temporal trends in invasive pneumococcal disease and pneumococcal serotypes over 7 decades. Clin Infect Dis 50:329–337 [View Article][PubMed]
    [Google Scholar]
  22. Harris S.R., Feil E.J., Holden M.T., Quail M.A., Nickerson E.K., Chantratita N., Gardete S., Tavares A., Day N., other authors. 2010; Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–474 [View Article][PubMed]
    [Google Scholar]
  23. Hausdorff W.P., Feikin D.R., Klugman K.P. 2005; Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis 5:83–93 [View Article][PubMed]
    [Google Scholar]
  24. Higgins M.A., Abbott D.W., Boulanger M.J., Boraston A.B. 2009; Blood group antigen recognition by a solute-binding protein from a serotype 3 strain of Streptococcus pneumoniae . J Mol Biol 388:299–309 [View Article][PubMed]
    [Google Scholar]
  25. Inouye M., Conway T.C., Zobel J., Holt K.E. 2012; Short read sequence typing (SRST): multi-locus sequence types from short reads. BMC Genomics 13:338 [View Article][PubMed]
    [Google Scholar]
  26. Iyer J.K., Milhous W.K., Cortese J.F., Kublin J.G., Plowe C.V. 2001; Plasmodium falciparum cross-resistance between trimethoprim and pyrimethamine. Lancet 358:1066–1067 [View Article][PubMed]
    [Google Scholar]
  27. Johnson H.L., Deloria-Knoll M., Levine O.S., Stoszek S.K., Freimanis Hance L., Reithinger R., Muenz L.R., O'Brien K.L. 2010; Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project. PLoS Med 7:e1000348 [View Article][PubMed]
    [Google Scholar]
  28. Klugman K.P., Madhi S.A., Huebner R.E., Kohberger R., Mbelle N., Pierce N., Vaccine Trialists Group. 2003; A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N Engl J Med 349:1341–1348 [View Article][PubMed]
    [Google Scholar]
  29. Klugman K., Cutts F., Adegbola R.A., Black S., Madhi S.A., O'Brien K., Santosham M., Shinefield H. 2008; Meta-analysis of the efficacy of conjugate vaccines against invasive pneumococcal disease. In Pneumococcal Vaccines317–326Edited by Siber G., Klugman K., Mäkelä P. Washington, DC: American Society for Microbiology; [View Article]
    [Google Scholar]
  30. Köser C.U., Holden M.T., Ellington M.J., Cartwright E.J., Brown N.M., Ogilvy-Stuart A.L., Hsu L.Y., Chewapreecha C., Croucher N.J., other authors. 2012; Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 366:2267–2275 [View Article][PubMed]
    [Google Scholar]
  31. Le Bourgeois P., Bugarel M., Campo N., Daveran-Mingot M.L., Labonté J., Lanfranchi D., Lautier T., Pagès C., Ritzenthaler P. 2007; The unconventional Xer recombination machinery of streptococci/lactococci. PLoS Genet 3:e117[PubMed] [CrossRef]
    [Google Scholar]
  32. Letunic I., Bork P. 2011; Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39:W475–W478 [View Article][PubMed]
    [Google Scholar]
  33. Li H., Durbin R. 2009; Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760 [View Article][PubMed]
    [Google Scholar]
  34. Li L., Stoeckert C.J. Jr, Roos D.S. 2003; OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189 [View Article][PubMed]
    [Google Scholar]
  35. Li M.-F., Zhang B.-C., Li J., Sun L. 2014; Sil: a Streptococcus iniae bacteriocin with dual role as an antimicrobial and an immunomodulator that inhibits innate immune response and promotes S. iniae infection. PLoS One 9:e96222 [View Article][PubMed]
    [Google Scholar]
  36. Mukouhara T., Arimoto T., Cho K., Yamamoto M., Igarashi T. 2011; Surface lipoprotein PpiA of Streptococcus mutans suppresses scavenger receptor MARCO-dependent phagocytosis by macrophages. Infect Immun 79:4933–4940 [View Article][PubMed]
    [Google Scholar]
  37. O'Brien K.L., Wolfson L.J., Watt J.P., Henkle E., Deloria-Knoll M., McCall N., Lee E., Mulholland K., Levine O.S., Cherian T., Hib and Pneumococcal Global Burden of Disease Study Team. 2009; Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374:893–902 [View Article][PubMed]
    [Google Scholar]
  38. Pai R., Moore M.R., Pilishvili T., Gertz R.E., Whitney C.G., Beall B., Active Bacterial Core Surveillance Team. 2005; Postvaccine genetic structure of Streptococcus pneumoniae serotype 19A from children in the United States. J Infect Dis 192:1988–1995 [View Article][PubMed]
    [Google Scholar]
  39. United Nations High Commissioner for Refugees 2000 The State of the World's Refugees, 2000: Fifty Years of Humanitarian Action Oxford: Oxford University Press;
    [Google Scholar]
  40. Ritchie N.D., Mitchell T.J., Evans T.J. 2012; What is different about serotype 1 pneumococci?. Future Microbiol 7:33–46 [View Article][PubMed]
    [Google Scholar]
  41. Seemann T. 2014; Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  42. Stamatakis A. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  43. Turner P., Turner C., Jankhot A., Helen N., Lee S.J., Day N.P., White N.J., Nosten F., Goldblatt D. 2012; A longitudinal study of Streptococcus pneumoniae carriage in a cohort of infants and their mothers on the Thailand-Myanmar border. PLoS One 7:e38271 [View Article][PubMed]
    [Google Scholar]
  44. Williams T.M., Loman N.J., Ebruke C., Musher D.M., Adegbola R.A., Pallen M.J., Weinstock G.M., Antonio M. 2012; Genome analysis of a highly virulent serotype 1 strain of Streptococcus pneumoniae from West Africa. PLoS One 7:e26742 [View Article][PubMed]
    [Google Scholar]
  45. Yildirim I., Hanage W.P., Lipsitch M., Shea K.M., Stevenson A., Finkelstein J., Huang S.S., Lee G.M., Kleinman K., Pelton S.I. 2010; Serotype specific invasive capacity and persistent reduction in invasive pneumococcal disease. Vaccine 29:283–288 [View Article][PubMed]
    [Google Scholar]
  46. Zerbino D.R., Birney E. 2008; Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000027
Loading
/content/journal/mgen/10.1099/mgen.0.000027
Loading

Data & Media loading...

Supplements

Supplementary Data

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error