1887

Abstract

Leucine-responsive regulatory protein (Lrp) is a transcriptional regulator for the genes involved in transport, biosynthesis and catabolism of amino acids in . In order to identify the whole set of genes under the direct control of Lrp, we performed Genomic SELEX screening and identified a total of 314 Lrp-binding sites on the genome. As a result, the regulation target of Lrp was predicted to expand from the hitherto identified genes for amino acid metabolism to a set of novel target genes for utilization of amino acids for protein synthesis, including tRNAs, aminoacyl-tRNA synthases and rRNAs. Northern blot analysis indicated alteration of mRNA levels for at least some novel targets, including the aminoacyl-tRNA synthetase genes. Phenotype MicroArray of the mutant indicated significant alteration in utilization of amino acids and peptides, whilst metabolome analysis showed variations in the concentration of amino acids in the mutant. From these two datasets we realized a reverse correlation between amino acid levels and cell growth rate: fast-growing cells contain low-level amino acids, whilst a high level of amino acids exists in slow-growing cells. Taken together, we propose that Lrp is a global regulator of transcription of a large number of the genes involved in not only amino acid transport and metabolism, but also amino acid utilization.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000001
2015-07-15
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/1/1/mgen000001.html?itemId=/content/journal/mgen/10.1099/mgen.0.000001&mimeType=html&fmt=ahah

References

  1. Ali Azam T. , Iwata A. , Nishimura A. , Ueda S. , Ishihama A. . ( 1999;). Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181: 6361–6370 [PubMed].
    [Google Scholar]
  2. Ambartsoumian G. , D'Ari R. , Lin R.T. , Newman E.B. . ( 1994;). Altered amino acid metabolism in lrp mutants of Escherichia coli K12 and their derivatives. Microbiology 140: 1737–1744 [CrossRef] [PubMed].
    [Google Scholar]
  3. Anderson J.J. , Quay S.C. , Oxender D.L. . ( 1976;). Mapping of two loci affecting the regulation of branched-chain amino acid transport in Escherichia coli K-12. J Bacteriol 126: 80–90 [PubMed].
    [Google Scholar]
  4. Baba T. , Ara T. , Hasegawa M. , Takai Y. , Okumura Y. , Baba M. , Datsenko K.A. , Tomita M. , Wanner B.L. , Mori H. . ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 0008 [CrossRef] [PubMed].
    [Google Scholar]
  5. Berthiaume F. , Crost C. , Labrie V. , Martin C. , Newman E.B. , Harel J. . ( 2004;). Influence of l-leucine and l-alanine on Lrp regulation of foo, coding for F1651, a Pap homologue. J Bacteriol 186: 8537–8541 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bochner B.R. . ( 2009;). Global phenotypic characterization of bacteria. FEMS Microbiol Rev 33: 191–205 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bochner B.R. , Gadzinski P. , Panomitros E. . ( 2001;). Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11: 1246–1255 [CrossRef] [PubMed].
    [Google Scholar]
  8. Brinkman A.B. , Ettema T.J.G. , de Vos W.M. , van der Oost J. . ( 2003;). The Lrp family of transcriptional regulators. Mol Microbiol 48: 287–294 [CrossRef] [PubMed].
    [Google Scholar]
  9. Calvo J.M. , Matthews R.G. . ( 1994;). The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli . Microbiol Rev 58: 466–490 [PubMed].
    [Google Scholar]
  10. Chen S. , Calvo J.M. . ( 2002;). Leucine-induced dissociation of Escherichia coli Lrp hexadecamers to octamers. J Mol Biol 318: 1031–1042 [CrossRef] [PubMed].
    [Google Scholar]
  11. Chen S. , Hao Z. , Bieniek E. , Calvo J.M. . ( 2001a;). Modulation of Lrp action in Escherichia coli by leucine: effects on non-specific binding of Lrp to DNA. J Mol Biol 314: 1067–1075 [CrossRef] [PubMed].
    [Google Scholar]
  12. Chen S. , Rosner M.H. , Calvo J.M. . ( 2001b;). Leucine-regulated self-association of leucine-responsive regulatory protein (Lrp) from Escherichia coli . J Mol Biol 312: 625–635 [CrossRef] [PubMed].
    [Google Scholar]
  13. Cho B.K. , Barrett C.L. , Knight E.M. , Park Y.S. , Palsson B.O. . ( 2008;). Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli . Proc Natl Acad Sci U S A 105: 19462–19467 [CrossRef] [PubMed].
    [Google Scholar]
  14. Datsenko K.A. , Wanner B.L. . ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645 [CrossRef] [PubMed].
    [Google Scholar]
  15. de los Rios S. , Perona J.J. . ( 2007;). Structure of the Escherichia coli leucine-responsive regulatory protein Lrp reveals a novel octameric assembly. J Mol Biol 366: 1589–1602 [CrossRef] [PubMed].
    [Google Scholar]
  16. Ernsting B.R. , Atkinson M.R. , Ninfa A.J. , Matthews R.G. . ( 1992;). Characterization of the regulon controlled by the leucine-responsive regulatory protein in Escherichia coli . J Bacteriol 174: 1109–1118 [PubMed].
    [Google Scholar]
  17. Gazeau M. , Delort F. , Dessen P. , Blanquet S. , Plateau P. . ( 1992;). Escherichia coli leucine-responsive regulatory protein (Lrp) controls lysyl-tRNA synthetase expression. FEBS Lett 300: 254–258 [CrossRef] [PubMed].
    [Google Scholar]
  18. Haney S.A. , Platko J.V. , Oxender D.L. , Calvo J.M. . ( 1992;). Lrp, a leucine-responsive protein, regulates branched-chain amino acid transport genes in Escherichia coli . J Bacteriol 174: 108–115 [PubMed].
    [Google Scholar]
  19. Hart B.R. , Blumenthal R.M. . ( 2011;). Unexpected coregulator range for the global regulator Lrp of Escherichia coli Proteus mirabilis . J Bacteriol 193: 1054–1064 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hasegawa A. , Ogasawara H. , Kori A. , Teramoto J. , Ishihama A. . ( 2008;). The transcription regulator AllR senses both allantoin and glyoxylate and controls a set of genes for degradation and reutilization of purines. Microbiology 154: 3366–3378 [CrossRef] [PubMed].
    [Google Scholar]
  21. Houlberg U. , Jensen K.F. . ( 1983;). Role of hypoxanthine and guanine in regulation of Salmonella typhimurium pur gene expression. J Bacteriol 153: 837–845 [PubMed].
    [Google Scholar]
  22. Hung S.P. , Baldi P. , Hatfield G.W. . ( 2002;). Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein. J Biol Chem 277: 40309–40323 [CrossRef] [PubMed].
    [Google Scholar]
  23. Ibanez M.M. , Cerminati S. , Checa S.K. , Soncini F.C. . ( 2013;). Dissecting the metal selectivity of MerR monovalent metal ion sensors in Salmonella. J Bacteriol 195: 3084–3092.[CrossRef]
    [Google Scholar]
  24. Ishihama A. . ( 2009;). The nucleoid: an overview. . In EcoSal – Escherichia coli and Salmonella: Cellular and Molecular Biology . Edited by Böck A. , Curtiss R. III , Kaper J. B. , Karp P. D. , Neidhardt F. C. , Nystrom T. , Slauch J. M. , Squires C. L. , Ussery D. . Washington, DC: American Society for Microbiology; [CrossRef] [PubMed].
    [Google Scholar]
  25. Ishihama A. , Kori A. , Koshio E. , Yamada K. , Maeda H. , Shimada T. , Makinoshima H. , Iwata A. , Fujita N. . ( 2014;). Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli . J Bacteriol 196: 2718–2727 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kim S.H. , Schneider B.L. , Reitzer L. . ( 2010;). Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli . J Bacteriol 192: 5304–5311 [CrossRef] [PubMed].
    [Google Scholar]
  27. Lin R. , D'Ari R. , Newman E.B. . ( 1992;). λ placMu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol 174: 1948–1955 [PubMed].
    [Google Scholar]
  28. Lorca G.L. , Ezersky A. , Lunin V.V. , Walker J.R. , Altamentova S. , Evdokimova E. , Vedadi M. , Bochkarev A. , Savchenko A. . ( 2007;). Glyoxylate and pyruvate are antagonistic effectors of the Escherichia coli IclR transcriptional regulator. J Biol Chem 282: 16476–16491 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ma Z. , Richard H. , Tucker D.L. , Conway T. , Foster J.W. . ( 2002;). Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J Bacteriol 184: 7001–7012 [CrossRef] [PubMed].
    [Google Scholar]
  30. Marbaniang C.N. , Gowrishankar J. . ( 2011;). Role of ArgP (IciA) in lysine-mediated repression in Escherichia coli . J Bacteriol 193: 5985–5996 [CrossRef] [PubMed].
    [Google Scholar]
  31. Martin C. . ( 1996;). The clp (CS31A) operon is negatively controlled by Lrp, ClpB, and l-alanine at the transcriptional level. Mol Microbiol 21: 281–292 [CrossRef] [PubMed].
    [Google Scholar]
  32. Newman E.B. , Lin R. . ( 1995;). Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli . Annu Rev Microbiol 49: 747–775 [CrossRef] [PubMed].
    [Google Scholar]
  33. Newman E.B. , D'Ari R. , Lin R.T. . ( 1992;). The leucine-Lrp regulon in E. coli: a global response in search of a raison d'être. Cell 68: 617–619 [CrossRef] [PubMed].
    [Google Scholar]
  34. Ohashi Y. , Hirayama A. , Ishikawa T. , Nakamura S. , Shimizu K. , Ueno Y. , Tomita M. , Soga T. . ( 2008;). Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol Biosyst 4: 135–147 [CrossRef] [PubMed].
    [Google Scholar]
  35. Pittard J. . ( 1996;). The various strategies within the TyrR regulation of Escherichia coli to modulate gene expression. Genes Cells 1: 717–725 [CrossRef] [PubMed].
    [Google Scholar]
  36. Platko J.V. , Calvo J.M. . ( 1993;). Mutations affecting the ability of Escherichia coli Lrp to bind DNA, activate transcription, or respond to leucine. J Bacteriol 175: 1110–1117 [PubMed].
    [Google Scholar]
  37. Pul U. , Wurm R. , Lux B. , Meltzer M. , Menzel A. , Wagner R. , LRP N.S. . ( 2005;). cooperative partners for transcription regulation at Escherichia coli rRNA promoters. Mol Microbiol 58: 864–876 [CrossRef] [PubMed].
    [Google Scholar]
  38. Roesch P.L. , Blomfield I.C. . ( 1998;). Leucine alters the interaction of the leucine-responsive regulatory protein (Lrp) with the fim switch to stimulate site-specific recombination in Escherichia coli . Mol Microbiol 27: 751–761 [CrossRef] [PubMed].
    [Google Scholar]
  39. Salgado H. , Gama-Castro S. , Peralta-Gil M. , Díaz-Peredo E. , Sánchez-Solano F. , Santos-Zavaleta A. , Martínez-Flores I. , Jiménez-Jacinto V. , Bonavides-Martínez C. , other authors . ( 2006;). RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res 34: D394–D397 [CrossRef] [PubMed].
    [Google Scholar]
  40. Shimada T. , Fujita N. , Maeda M. , Ishihama A. . ( 2005;). Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells 10: 907–918 [CrossRef] [PubMed].
    [Google Scholar]
  41. Shimada T. , Hirao K. , Kori A. , Yamamoto K. , Ishihama A. . ( 2007;). RutR is the uracil/thymine-sensing master regulator of a set of genes for synthesis and degradation of pyrimidines. Mol Microbiol 66: 744–757 [CrossRef] [PubMed].
    [Google Scholar]
  42. Shimada T. , Ishihama A. , Busby S.J.W. , Grainger D.C. . ( 2008;). The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res 36: 3950–3955 [CrossRef] [PubMed].
    [Google Scholar]
  43. Shimada T. , Bridier A. , Briandet R. , Ishihama A. . ( 2011;). Novel roles of LeuO in transcription regulation of E. coli genome: antagonistic interplay with the universal silencer H-NS. Mol Microbiol 82: 378–397 [CrossRef] [PubMed].
    [Google Scholar]
  44. Shimada K. , Ogasawara H. , Yamada K. , Shimura M. , Kori A. , Shimada T. , Yamanaka Y. , Yamamoto K. , Ishihama A. . ( 2013;). Screening of promoter-specific transcription factors: multiple regulators for the sdiA gene involved in cell division control and quorum sensing. Microbiology 159: 2501–2512 [CrossRef] [PubMed].
    [Google Scholar]
  45. Shimada T. , Shimada K. , Matsui M. , Kitai Y. , Igarashi J. , Suga H. , Ishihama A. . ( 2014;). Roles of cell division control factor SdiA: recognition of quorum sensing signals and modulation of transcription regulation targets. Genes Cells 19: 405–418 [CrossRef] [PubMed].
    [Google Scholar]
  46. Soga T. , Heiger D.N. . ( 2000;). Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72: 1236–1241 [CrossRef] [PubMed].
    [Google Scholar]
  47. Soga T. , Ueno Y. , Naraoka H. , Ohashi Y. , Tomita M. , Nishioka T. . ( 2002;). Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74: 2233–2239 [CrossRef] [PubMed].
    [Google Scholar]
  48. Soga T. , Ohashi Y. , Ueno Y. , Naraoka H. , Tomita M. , Nishioka T. . ( 2003;). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2: 488–494 [CrossRef] [PubMed].
    [Google Scholar]
  49. Soga T. , Baran R. , Suematsu M. , Ueno Y. , Ikeda S. , Sakurakawa T. , Kakazu Y. , Ishikawa T. , Robert M. , other authors . ( 2006;). Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 281: 16768–16776 [CrossRef] [PubMed].
    [Google Scholar]
  50. Stim-Herndon K.P. , Flores T.M. , Bennett G.N. . ( 1996;). Molecular characterization of adiY, a regulatory gene which affects expression of the biodegradative acid-induced arginine decarboxylase gene (adiA) of Escherichia coli . Microbiology 142: 1311–1320 [CrossRef] [PubMed].
    [Google Scholar]
  51. Sugimoto M. , Wong D.T. , Hirayama A. , Soga T. , Tomita M. . ( 2010;). Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 6: 78–95 [CrossRef] [PubMed].
    [Google Scholar]
  52. Tani T.H. , Khodursky A. , Blumenthal R.M. , Brown P.O. , Matthews R.G. . ( 2002;). Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc Natl Acad Sci U S A 99: 13471–13476 [CrossRef] [PubMed].
    [Google Scholar]
  53. Willins D.A. , Ryan C.W. , Platko J.V. , Calvo J.M. . ( 1991;). Characterization of Lrp, and Escherichia coli regulatory protein that mediates a global response to leucine. J Biol Chem 266: 10768–10774 [PubMed].
    [Google Scholar]
  54. Yamamoto K. , Hirao K. , Oshima T. , Aiba H. , Utsumi R. , Ishihama A. . ( 2005;). Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli . J Biol Chem 280: 1448–1456 [CrossRef] [PubMed].
    [Google Scholar]
  55. Zhi J. , Mathew E. , Freundlich M. . ( 1998;). In vitro in vivo characterization of three major dadAX promoters in Escherichia coli that are regulated by cyclic AMP-CRP and Lrp. Mol Gen Genet 258: 442–447 [CrossRef] [PubMed].
    [Google Scholar]
  56. Zhi J. , Mathew E. , Freundlich M. . ( 1999;). Lrp binds to two regions in the dadAX promoter region of Escherichia coli to repress and activate transcription directly. Mol Microbiol 32: 29–40 [CrossRef] [PubMed].
    [Google Scholar]
  57. Zhou L. , Lei X.H. , Bochner B.R. , Wanner B.L. . ( 2003;). Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 185: 4956–4972 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000001
Loading
/content/journal/mgen/10.1099/mgen.0.000001
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error