-
Volume 67,
Issue 3,
2018
Volume 67, Issue 3, 2018
- Prevention and Therapy
-
-
-
The double adjuvants LTB and CpG significantly enhanced the immuno-protective effects of recombinant GIT derived from Staphylococcus aureus and Streptococcus in mice
Purpose. In this study, we prepared GapC1-150-IsdB126-361-TRAP (GIT) proteins plus heat-labile enterotoxin B (LTB) as an intra-molecular adjuvant, together with CpG to further enhance its immunogenicity.
Methodology. Initially, the target genes were acquired and inserted into pET-32a (+) vectors to express LTB–GIT protein. LTB–GIT expression was confirmed by Western blotting and its immunocompetence was estimated through ELISA. Further, we immunized BALB/c mice with the LTB–GIT plus CpG adjuvant. After the second immunization, the antigen-specific CD4+ cell responses for IFN-γ, IL-2, IL-4 and IL-10 were monitored by intracellular cytokine staining (ICS) assay. After the third immunization, the level of IgG antibodies in the serum from immunized groups was assessed by ELISA, and the protective immune response was appraised by Staphylococcus aureus and Streptococcus dysgalactiae challenge.
Results. The ELISA results showed that the OD450nm value of the LTB–GIT group was significantly higher than that of the BSA group. The group immunized with LTB–GIT plus CpG exhibited significantly stronger CD4+ T cell responses for IFN-γ, IL-2, IL-4 and IL-10 compared to the group immunized with LTB–GIT, GIT alone orLTB–GIT plus CpG. In addition, the group immunized with LTB–GIT plus CpG generated the highest level of IgG antibodies against GIT among all of the groups, and our results also showed that LTB–GIT plus CpG markedly improved the survival percentage of mice compared to other groups.
Conclusion. We confirmed that the novel double adjuvants, LTB and CpG, are able to significantly improve GIT-induced immune responses. This formula could be a promising strategy for enhancing the immune efficacy of multi-subunit vaccines against Staphylococcus aureus and streptococcal infection.
-
-
-
-
Immunogenicity in chickens with orally administered recombinant chicken-borne Lactobacillus saerimneri expressing FimA and OmpC antigen of O78 avian pathogenic Escherichia coli
Purpose. Avian colibacillosis is responsible for economic losses to poultry producers worldwide. To combat this, we aimed to develop an effective oral vaccine for chicken against O78 avian pathogenic Escherichia coli (APEC) infection through a Lactobacillus delivery system.
Methodology. Eight Lactobacillus strains isolated from the intestines of broiler chickens were evaluated based on their in vitro adherence ability to assess their potential as a delivery vector. Fimbrial subunit A (FimA) and outer-membrane protein C (OmpC) of APEC with and without fusion to dendritic cell-targeting peptide (DCpep) and microfold cell-targeting peptide (Co1) were displayed on the surface of Lactobacillus saerimneri M-11 and yielded vaccine groups (pPG-ompC-fimA/M-11 and pPG-ompC-fimA-Co1-DCpep/M-11, respectively). The colonization of the recombinant strains in vivo was assessed and the immunogenicity and protective efficacy of orally administered recombinant strains in chickens were evaluated.
Results. The colonization of the recombinant strains in vivo revealed no significant differences between the recombinant and wild-type strains. Chickens orally administered with vaccine groups showed significantly higher levels of OmpC/FimA-specific IgG in serum and mucosal IgA in cecum lavage, nasal lavage and stool compared to the pPG/M-11 group. After challenge with APEC CVCC1553, better protective efficacy was observed in chickens orally immunized with pPG-ompC-fimA/M-11 and pPG-ompC-fimA-Co1-DCpep/M-11, but no significant differences were observed between the two groups.
Conclusions. Recombinant chicken-borne L. saerimneri M-11 showed good immunogenicity in chickens, suggesting that it may be a promising vaccine candidate against APEC infections. However, the activity of mammalian DCpep and Co1 was not significant in chickens.
-
-
-
The effect of P38 MAP kinase inhibition in a mouse model of influenza
More LessPurpose. Influenza viruses are a common cause of human respiratory infections, resulting in epidemics of high morbidity and mortality. We investigated the effect of a novel mitogen-activated protein kinase (MAPK) inhibitor in vitro and in a murine influenza model to further explore whether p38 MAPK inhibition could reduce viral replication.
Methods. In vitro, the antiviral effect of p38 MAPK inhibitor BCT194 was evaluated in differentiated human bronchial epithelial cells (HBECs); in vivo, female BALB/c mice were infected intranasally with 150 pfu of influenza H1N1 A/Puerto Rico/8/34 and treated with BCT197 (a closely related p38 MAPK inhibitor with an IC50 value of<1 µM, currently in clinical testing), dexamethasone or oseltamivir (Tamiflu) starting 24 h post infection. Body weight, bronchoalveolar lavage cells, cytokines, total protein and lactate dehydrogenase as well as serum cytokines were measured; a subset of animals was evaluated histopathologically.
Results/Key findings. p38MAP kinase inhibition with BCT194 had no impact on influenza replication in HBECs. When examining BCT197 in vivo, and comparing to vehicle-treated animals, reduced weight loss, improvement in survival and lack of impaired viral control was observed at BCT197 concentrations relevant to those being used in clinical trials of acute exacerbations of chronic obstructive pulmonary disease; at higher concentrations of BCT197 these effects were reduced.
Conclusions. Compared to vehicle treatment, BCT197 (administered at a clinically relevant concentration) improved outcomes in a mouse model of influenza. This is encouraging given that the use of innate inflammatory pathway inhibitors may raise concerns of negative effects on infection regulation.
-
- Corrigendum
-
Volumes and issues
-
Volume 74 (2025)
-
Volume 73 (2024)
-
Volume 72 (2023 - 2024)
-
Volume 71 (2022)
-
Volume 70 (2021)
-
Volume 69 (2020)
-
Volume 68 (2019)
-
Volume 67 (2018)
-
Volume 66 (2017)
-
Volume 65 (2016)
-
Volume 64 (2015)
-
Volume 63 (2014)
-
Volume 62 (2013)
-
Volume 61 (2012)
-
Volume 60 (2011)
-
Volume 59 (2010)
-
Volume 58 (2009)
-
Volume 57 (2008)
-
Volume 56 (2007)
-
Volume 55 (2006)
-
Volume 54 (2005)
-
Volume 53 (2004)
-
Volume 52 (2003)
-
Volume 51 (2002)
-
Volume 50 (2001)
-
Volume 49 (2000)
-
Volume 48 (1999)
-
Volume 47 (1998)
-
Volume 46 (1997)
-
Volume 45 (1996)
-
Volume 44 (1996)
-
Volume 43 (1995)
-
Volume 42 (1995)
-
Volume 41 (1994)
-
Volume 40 (1994)
-
Volume 39 (1993)
-
Volume 38 (1993)
-
Volume 37 (1992)
-
Volume 36 (1992)
-
Volume 35 (1991)
-
Volume 34 (1991)
-
Volume 33 (1990)
-
Volume 32 (1990)
-
Volume 31 (1990)
-
Volume 30 (1989)
-
Volume 29 (1989)
-
Volume 28 (1989)
-
Volume 27 (1988)
-
Volume 26 (1988)
-
Volume 25 (1988)
-
Volume 24 (1987)
-
Volume 23 (1987)
-
Volume 22 (1986)
-
Volume 21 (1986)
-
Volume 20 (1985)
-
Volume 19 (1985)
-
Volume 18 (1984)
-
Volume 17 (1984)
-
Volume 16 (1983)
-
Volume 15 (1982)
-
Volume 14 (1981)
-
Volume 13 (1980)
-
Volume 12 (1979)
-
Volume 11 (1978)
-
Volume 10 (1977)
-
Volume 9 (1976)
-
Volume 8 (1975)
-
Volume 7 (1974)
-
Volume 6 (1973)
-
Volume 5 (1972)
-
Volume 4 (1971)
-
Volume 3 (1970)
-
Volume 2 (1969)
-
Volume 1 (1968)
Most Read This Month
