1887

Abstract

The amount of lipopolysaccharide (LPS) O antigen (OAg) and its chain length distribution are important factors that protect bacteria from serum complement. serovar Typhi produces LPS with long chain length distribution (L-OAg) controlled by the gene, whereas serovar Typhimurium produces LPS with two OAg chain lengths: an L-OAg controlled by Wzz and a very long (VL) OAg determined by Wzz. This study shows that serovar Enteritidis also has a bimodal OAg distribution with two preferred OAg chain lengths similar to serovar Typhimurium. It was reported previously that OAg production by Typhi increases at the late exponential and stationary phases of growth. The results of this study demonstrate that increased amounts of L-OAg produced by Typhi grown to stationary phase confer higher levels of bacterial resistance to human serum. Production of OAg by serovars Typhimurium and Enteritidis was also under growth-phase-dependent regulation; however, while the total amount of OAg increased during growth, the VL-OAg distribution remained constant. The VL-OAg distribution was primarily responsible for complement resistance, protecting the non-typhoidal serovars from the lytic action of serum irrespective of the growth phase. As a result, the non-typhoidal species were significantly more resistant than Typhi to human serum. When Typhi was transformed with a multicopy plasmid containing the Typhimurium gene, resistance to serum increased to levels comparable to the non-typhoidal serovars. In contrast to the relevant role for high-molecular-mass OAg molecules, the presence of Vi antigen did not contribute to serum resistance of clinical isolates of serovar Typhi.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47848-0
2008-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/8/938.html?itemId=/content/journal/jmm/10.1099/jmm.0.47848-0&mimeType=html&fmt=ahah

References

  1. Bastin, D. A., Stevenson, G., Brown, P. K., Haase, A. & Reeves, P. R. ( 1993; ). Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol 7, 725–734.[CrossRef]
    [Google Scholar]
  2. Batchelor, R. A., Alifano, P., Biffali, E., Hull, S. I. & Hull, R. A. ( 1992; ). Nucleotide sequences of the genes regulating O-polysaccharide antigen chain length (rol) from Escherichia coli and Salmonella typhimurium: protein homology and functional complementation. J Bacteriol 174, 5228–5236.
    [Google Scholar]
  3. Bengoechea, J. A., Najdenski, H. & Skurnik, M. ( 2004; ). Lipopolysaccharide O antigen status of Yersinia enterocolitica O : 8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. Mol Microbiol 52, 451–469.[CrossRef]
    [Google Scholar]
  4. Bittner, M., Saldias, S., Estevez, C., Zaldivar, M., Marolda, C. L., Valvano, M. A. & Contreras, I. ( 2002; ). O-antigen expression in Salmonella enterica serovar Typhi is regulated by nitrogen availability through RpoN-mediated transcriptional control of the rfaH gene. Microbiology 148, 3789–3799.
    [Google Scholar]
  5. Bueno, S. M., Santiviago, C. A., Murillo, A. A., Fuentes, J. A., Trombert, A. N., Rodas, P. I., Youderian, P. & Mora, G. C. ( 2004; ). Precise excision of the large pathogenicity island, SPI7, in Salmonella enterica serovar Typhi. J Bacteriol 186, 3202–3213.[CrossRef]
    [Google Scholar]
  6. Burns, S. M. & Hull, S. I. ( 1998; ). Comparison of loss of serum resistance by defined lipopolysaccharide mutants and an acapsular mutant of uropathogenic Escherichia coli O75 : K5. Infect Immun 66, 4244–4253.
    [Google Scholar]
  7. Carter, J. A., Blondel, C. J., Zaldívar, M., Álvarez, S. A., Marolda, C. L., Valvano, M. A. & Contreras, I. ( 2007; ). O-antigen modal chain length in Shigella flexneri 2a is growth-regulated through RfaH-mediated transcriptional control of the wzy gene. Microbiology 153, 3499–3507.[CrossRef]
    [Google Scholar]
  8. Cherepanov, P. P. & Wackernagel, W. ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.[CrossRef]
    [Google Scholar]
  9. Clas, F. & Loos, M. ( 1981; ). Antibody-independent binding of the first component of complement (C1) and its subcomponent C1q to the S and R forms of Salmonella minnesota. Infect Immun 31, 1138–1144.
    [Google Scholar]
  10. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  11. Delgado, M. A., Mouslim, C. & Groisman, E. A. ( 2006; ). The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O-antigen chain length determinant. Mol Microbiol 60, 39–50.[CrossRef]
    [Google Scholar]
  12. Deng, W., Liou, S. R., Plunkett, G., III, Mayhew, G. F., Rose, D. J., Burland, V., Kodoyianni, V., Schwartz, D. C. & Blattner, F. R. ( 2003; ). Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 185, 2330–2337.[CrossRef]
    [Google Scholar]
  13. Grossman, N., Schmetz, M. A., Foulds, J., Klima, E. N., Jimenez-Lucho, V. E., Leive, L. L. & Joiner, K. A. ( 1987; ). Lipopolysaccharide size and distribution determine serum resistance in Salmonella montevideo. J Bacteriol 169, 856–863.
    [Google Scholar]
  14. Guard-Petter, J. ( 1998; ). Variants of smooth Salmonella enterica serovar Enteritidis that grow to higher cell density than the wild type are more virulent. Appl Environ Microbiol 64, 2166–2172.
    [Google Scholar]
  15. Hashimoto, Y., Li, N., Yokoyama, H. & Ezaki, T. ( 1993; ). Complete nucleotide sequence and molecular characterization of ViaB region encoding Vi antigen in Salmonella typhi. J Bacteriol 175, 4456–4465.
    [Google Scholar]
  16. Hoare, A., Bittner, M., Carter, J., Alvarez, S., Zaldivar, M., Bravo, D., Valvano, M. A. & Contreras, I. ( 2006; ). The outer core lipopolysaccharide of Salmonella enterica serovar Typhi is required for bacterial entry into epithelial cells. Infect Immun 74, 1555–1564.[CrossRef]
    [Google Scholar]
  17. Hong, M. & Payne, S. M. ( 1997; ). Effect of mutations in Shigella flexneri chromosomal and plasmid-encoded lipopolysaccharide genes on invasion and serum resistance. Mol Microbiol 24, 779–791.[CrossRef]
    [Google Scholar]
  18. Joiner, K. A. ( 1988; ). Complement evasion by bacteria and parasites. Annu Rev Microbiol 42, 201–230.[CrossRef]
    [Google Scholar]
  19. Joiner, K. A., Grossman, N., Schmetz, M. & Leive, L. ( 1986; ). C3 binds preferentially to long-chain lipopolysaccharide during alternative pathway activation by Salmonella montevideo. J Immunol 136, 710–715.
    [Google Scholar]
  20. Klugman, K. P., Gilbertson, I. T., Koornhof, H. J., Robbins, J. B., Schneerson, R., Schulz, D., Cadoz, M. & Armand, J. ( 1987; ). Protective activity of Vi capsular polysaccharide vaccine against typhoid fever. Lancet 2, 1165–1169.
    [Google Scholar]
  21. Liang-Takasaki, C.-J., Saxén, H., Mäkelä, P. H. & Leive, L. ( 1983; ). Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of Salmonellae. Infect Immun 41, 563–569.
    [Google Scholar]
  22. Looney, R. J. & Steigbigel, R. T. ( 1986; ). Role of the Vi antigen of Salmonella typhi in resistance to host defense in vitro. J Lab Clin Med 108, 506–516.
    [Google Scholar]
  23. Mäkelä, P. H., Hovi, M., Saxen, H., Valtonen, M. & Valtonen, V. ( 1988; ). Salmonella, complement and mouse macrophages. Immunol Lett 19, 217–222.[CrossRef]
    [Google Scholar]
  24. Marolda, C. L., Lahiry, P., Vines, E., Saldias, S. & Valvano, M. A. ( 2006; ). Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol 347, 237–252.
    [Google Scholar]
  25. McClelland, M., Sanderson, K. E., Spieth, J., Clifton, S. W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M. & other authors ( 2001; ). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856.[CrossRef]
    [Google Scholar]
  26. McConnell, M. & Wright, A. ( 1979; ). Variation in the structure and bacteriophage-inactivating capacity of Salmonella anatum lipopolysaccharide as a function of growth temperature. J Bacteriol 137, 746–751.
    [Google Scholar]
  27. Morona, R., Daniels, C. & Van Den Bosch, L. ( 2003; ). Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. Microbiology 149, 925–939.[CrossRef]
    [Google Scholar]
  28. Murray, G. L., Attridge, S. R. & Morona, R. ( 2003; ). Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol 47, 1395–1406.[CrossRef]
    [Google Scholar]
  29. Murray, G. L., Attridge, S. R. & Morona, R. ( 2005; ). Inducible serum resistance in Salmonella typhimurium is dependent on wzz (fepE)-regulated very long O antigen chains. Microbes Infect 7, 1296–1304.[CrossRef]
    [Google Scholar]
  30. Murray, G. L., Attridge, S. R. & Morona, R. ( 2006; ). Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J Bacteriol 188, 2735–2739.[CrossRef]
    [Google Scholar]
  31. Nevola, J. J., Stocker, B. A., Laux, D. C. & Cohen, P. S. ( 1985; ). Colonization of the mouse intestine by an avirulent Salmonella typhimurium strain and its lipopolysaccharide-defective mutants. Infect Immun 50, 152–159.
    [Google Scholar]
  32. Parkhill, J., Dougan, G., James, K. D., Thomson, N. R., Pickard, D., Wain, J., Churcher, C., Mungall, K. L., Bentley, S. D. & other authors ( 2001; ). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848–852.[CrossRef]
    [Google Scholar]
  33. Raetz, C. R. & Whitfield, C. ( 2002; ). Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635–700.[CrossRef]
    [Google Scholar]
  34. Raffatellu, M., Chessa, D., Wilson, R. P., Dusold, R., Rubino, S. & Baumler, A. J. ( 2005; ). The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect Immun 73, 3367–3374.[CrossRef]
    [Google Scholar]
  35. Raffatellu, M., Chessa, D., Wilson, R. P., Tukel, C., Akcelik, M. & Baumler, A. J. ( 2006; ). Capsule-mediated immune evasion: a new hypothesis explaining aspects of typhoid fever pathogenesis. Infect Immun 74, 19–27.[CrossRef]
    [Google Scholar]
  36. Rahman, M. M., Guard-Petter, J. & Carlson, R. W. ( 1997; ). A virulent isolate of Salmonella enteritidis produces a Salmonella typhi-like lipopolysaccharide. J Bacteriol 179, 2126–2131.
    [Google Scholar]
  37. Robbins, J. D. & Robbins, J. B. ( 1984; ). Reexamination of the protective role of the capsular polysaccharide (Vi antigen) of Salmonella typhi. J Infect Dis 150, 436–449.[CrossRef]
    [Google Scholar]
  38. Robbins-Manke, J. L., Zdraveski, Z. Z., Marinus, M. & Essigmann, J. M. ( 2005; ). Analysis of global gene expression and double strand-break formation in DNA adenine methyltransferase- and mismatch repair-deficient Escherichia coli. J Bacteriol 187, 7027–7037.[CrossRef]
    [Google Scholar]
  39. Rojas, G., Saldias, S., Bittner, M., Zaldivar, M. & Contreras, I. ( 2001; ). The rfaH gene, which affects lipopolysaccharide synthesis in Salmonella enterica serovar Typhi, is differentially expressed during the bacterial growth phase. FEMS Microbiol Lett 204, 123–128.[CrossRef]
    [Google Scholar]
  40. Saxén, H., Reima, I. & Mäkëla, P. H. ( 1987; ). Alternative complement pathway activation by Salmonella O polysaccharide as a virulence determinant in the mouse. Microb Pathog 2, 15–28.[CrossRef]
    [Google Scholar]
  41. Seshasayee, A. S. ( 2007; ). An assessment of the role of DNA adenine methyltransferase on gene expression regulation in E. coli. PLoS ONE 2, e273 [CrossRef]
    [Google Scholar]
  42. Skurnik, M., Venho, R., Bengoechea, J. A. & Moriyon, I. ( 1999; ). The lipopolysaccharide outer core of Yersinia enterocolitica serotype O:3 is required for virulence and plays a role in outer membrane integrity. Mol Microbiol 31, 1443–1462.[CrossRef]
    [Google Scholar]
  43. Stafford, G. P., Ogi, T. & Hughes, C. ( 2005; ). Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator. Microbiology 151, 1779–1788.[CrossRef]
    [Google Scholar]
  44. Tomas, J. M., Benedi, V. J., Ciurana, B. & Jofre, J. ( 1986; ). Role of capsule and O antigen in resistance of Klebsiella pneumoniae to serum bactericidal activity. Infect Immun 54, 85–89.
    [Google Scholar]
  45. Wang, Q., Frye, J. G., McClelland, M. & Harshey, R. M. ( 2004; ). Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52, 169–187.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47848-0
Loading
/content/journal/jmm/10.1099/jmm.0.47848-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error