1887

Abstract

is a pathogenic fungus that causes a superficial cutaneous infection called dermatophytosis, mainly in cats and humans. The mechanisms involved in adherence of to epidermis have never been investigated. Here, a model was developed to study the adherence of to feline corneocytes through the use of a reconstructed interfollicular feline epidermis (RFE). In this model, adherence of arthroconidia to RFE was found to be time-dependent, starting at 2 h post-inoculation and still increasing at 6 h. Chymostatin, a serine protease inhibitor, inhibited adherence to RFE by 53 %. Moreover, two mAbs against the keratinolytic protease subtilisin 3 (Sub3) inhibited adherence to RFE by 23 %, suggesting that subtilisins, and Sub3 in particular, are involved in the adherence process.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47827-0
2008-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/9/1152.html?itemId=/content/journal/jmm/10.1099/jmm.0.47827-0&mimeType=html&fmt=ahah

References

  1. Aljabre, S. H., Richardson, M. D., Scott, E. M. & Shankland, G. S. ( 1992; ). Germination of Trichophyton mentagrophytes on human stratum corneum in vitro. J Med Vet Mycol 30, 145–152.[CrossRef]
    [Google Scholar]
  2. Aljabre, S. H., Richardson, M. D., Scott, E. M., Rashid, A. & Shankland, G. S. ( 1993; ). Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis. Clin Exp Dermatol 18, 231–235.[CrossRef]
    [Google Scholar]
  3. Arrese, J. E., Piérard-Franchimont, C. & Piérard, G. E. ( 2003; ). Les teignes du cuir chevelu d'ici et d'ailleurs. Quand la prévention est à géographie variable. Rev Med Liege 58, 388–391.
    [Google Scholar]
  4. Brouta, F., Descamps, F., Monod, M., Vermout, S., Losson, B. & Mignon, B. ( 2002; ). Secreted metalloprotease gene family of Microsporum canis. Infect Immun 70, 5676–5683.[CrossRef]
    [Google Scholar]
  5. De Bernardis, F., Liu, H., O'Mahony, R., La Valle, R., Bartollino, S., Sandini, S., Grant, S., Brewis, N., Tomlinson, I. & other authors ( 2007; ). Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. J Infect Dis 195, 149–157.[CrossRef]
    [Google Scholar]
  6. Descamps, F., Brouta, F., Monod, M., Zaugg, C., Baar, D., Losson, B. & Mignon, B. ( 2002; ). Isolation of a Microsporum canis gene family encoding three subtilisin-like proteases expressed in vivo. J Invest Dermatol 119, 830–835.[CrossRef]
    [Google Scholar]
  7. Descamps, F., Brouta, F., Vermout, S., Monod, M., Losson, B. & Mignon, B. ( 2003; ). Recombinant expression and antigenic properties of a 31.5-kDa keratinolytic subtilisin-like serine protease from Microsporum canis. FEMS Immunol Med Microbiol 38, 29–34.[CrossRef]
    [Google Scholar]
  8. Duek, L., Kaufman, G., Ulman, Y. & Berdicevsky, I. ( 2004; ). The pathogenesis of dermatophyte infections in human skin sections. J Infect 48, 175–180.[CrossRef]
    [Google Scholar]
  9. Jousson, O., Lechenne, B., Bontems, O., Capoccia, S., Mignon, B., Barblan, J., Quandroni, M. & Monod, M. ( 2004; ). Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology 150, 301–310.[CrossRef]
    [Google Scholar]
  10. Kumagai, Y., Yagishita, H., Yajima, A., Okamoto, T. & Konishi, K. ( 2005; ). Molecular mechanism for connective tissue destruction by dipeptidyl aminopeptidase IV produced by the periodontal pathogen Porphyromonas gingivalis. Infect Immun 73, 2655–2664.[CrossRef]
    [Google Scholar]
  11. Lunder, M. & Lunder, M. ( 1992; ). Is Microsporum canis infection about to become a serious dermatological problem? Dermatology 184, 87–89.[CrossRef]
    [Google Scholar]
  12. Mann, B., Orihuela, C., Antikainen, J., Gao, G., Sublett, J., Korhonen, T. K. & Tuomanen, E. ( 2006; ). Multifunctional role of choline binding protein G in pneumococcal pathogenesis. Infect Immun 74, 821–829.[CrossRef]
    [Google Scholar]
  13. Mignon, B., Swinnen, M., Bouchara, J. P., Hofinger, M., Nikkels, A., Pierard, G., Gerday, C. & Losson, B. ( 1998; ). Purification and characterization of a 31.5-kDa keratinolytic subtilisin-like serine protease from Microsporum canis and evidence of its secretion in naturally infected cats. Med Mycol 36, 395–404.[CrossRef]
    [Google Scholar]
  14. Mignon, B., Vermout, S., Brouta, F., Nikkels, A., Losson, B. & Descamps, F. ( 2005; ). In vivo mRNA expression analysis of Microsporum canis secreted subtilisin-like serine proteases in feline dermatophytosis. In Advances in Veterinary Dermatology, vol. 5, pp. 255–260. Edited by A. Hillier, A. P. Foster & K. W. Kwochka. Oxford: Blackwell Publishing.
  15. Monod, M. & Borg-von Zepelin, M. ( 2002; ). Secreted proteinases and other virulence mechanisms of Candida albicans. Chem Immunol 81, 114–128.
    [Google Scholar]
  16. Naglik, J. R., Challacombe, S. J. & Hube, B. ( 2003; ). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67, 400–428.[CrossRef]
    [Google Scholar]
  17. Ollert, M. W., Sohnchen, R., Korting, H. C., Ollert, U., Brautigam, S. & Brautigam, W. ( 1993; ). Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes. Infect Immun 61, 4560–4568.
    [Google Scholar]
  18. Ruchel, R. & Schaffrinski, M. ( 1999; ). Versatile fluorescent staining of fungi in clinical specimens by using the optical brightener Blankophor. J Clin Microbiol 37, 2694–2696.
    [Google Scholar]
  19. Schaller, M., Korting, H. C., Schafer, W., Bastert, J., Chen, W. & Hube, B. ( 1999; ). Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol 34, 169–180.[CrossRef]
    [Google Scholar]
  20. Schaller, M., Bein, M., Korting, H. C., Baur, S., Hamm, G., Monod, M., Beinnhauer, S. & Hube, B. ( 2003; ). The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 71, 3227–3234.[CrossRef]
    [Google Scholar]
  21. Scott, D. W., Miller, W. H. & Griffin, C. E. ( 1995; ). Fungal skin diseases. In Small Animal Dermatology, 5th edn, pp. 329–391. Edited by G. H. Muller. Philadelphia, PA: W. B. Saunders.
  22. Tabart, J., Baldo, A., Vermout, S., Nusgens, B., Lapiere, C., Losson, B. & Mignon, B. ( 2007; ). Reconstructed interfollicular feline epidermis as a model for Microsporum canis dermatophytosis. J Med Microbiol 56, 971–975.[CrossRef]
    [Google Scholar]
  23. Watts, H. J., Cheah, F. S. H., Hube, B., Sanglard, D. & Gow, N. A. R. ( 1998; ). Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiol Lett 159, 129–135.[CrossRef]
    [Google Scholar]
  24. Zurita, J. & Hay, R. J. ( 1987; ). Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dermatol 89, 529–534.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47827-0
Loading
/content/journal/jmm/10.1099/jmm.0.47827-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error