1887

Abstract

The intestinal epithelial cell line HT-29 was used to study the apoptotic effect of toxin A (TcdA). TcdA is a 300 kDa single-chain protein, which glucosylates and thereby inactivates small GTPases of the Rho family (Rho, Rac and Cdc42). The effect of TcdA-catalysed glucosylation of the Rho GTPases is well known: reorganization of the actin cytoskeleton with accompanying morphological changes in cells, leading to complete rounding of cells and destruction of the intestinal barrier function. Less is known about the mechanism by which apoptosis is induced in TcdA-treated cells. In this study, TcdA induced the activation of caspase-3, -8 and -9. Apoptosis, as estimated by the DNA content of cells, started as early as 24 h after the addition of TcdA. The impact of Rho glucosylation was obvious when mutant TcdA with reduced or deficient glucosyltransferase activity was applied. TcdA mutant W101A, with 50-fold reduced glucosyltransferase activity, induced apoptosis only at an equipotent concentration compared with wild-type TcdA at a 50 % effective concentration of 0.2 nM. The enzyme-deficient mutant TcdA D285/287N was not able to induce apoptosis. Apoptosis induced by TcdA strictly depended on the activation of caspases, and was completely blocked by the pan-caspase inhibitor z-VAD-fmk. Destruction of the actin cytoskeleton by latrunculin B was not sufficient to induce apoptosis, indicating that apoptosis induced by TcdA must be due to another mechanism. In summary, TcdA-induced apoptosis (cytotoxic effect) depends on the glucosylation of Rho GTPases, but is not triggered by destruction of the actin cytoskeleton (cytopathic effect).

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47769-0
2008-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/765.html?itemId=/content/journal/jmm/10.1099/jmm.0.47769-0&mimeType=html&fmt=ahah

References

  1. Aznar, S. & Lacal, J. C. ( 2001; ). Rho signals to cell growth and apoptosis. Cancer Lett 165, 1–10.[CrossRef]
    [Google Scholar]
  2. Boatright, K. M. & Salvesen, G. S. ( 2003; ). Mechanisms of caspase activation. Curr Opin Cell Biol 15, 725–731.[CrossRef]
    [Google Scholar]
  3. Bobak, D., Moorman, J., Guanzon, A., Gilmer, L. & Hahn, C. ( 1997; ). Inactivation of the small GTPase Rho disrupts cellular attachment and induces adhesion-dependent and adhesion-independent apoptosis. Oncogene 15, 2179–2189.[CrossRef]
    [Google Scholar]
  4. Brenner, B., Koppenhoefer, U., Weinstock, C., Linderkamp, O., Lang, F. & Gulbins, E. ( 1997; ). Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem 272, 22173–22181.[CrossRef]
    [Google Scholar]
  5. Brito, G. A. C., Fujji, J., Carneiro, B. A., Lima, A. A. M., Obrig, T. & Guerrant, R. L. ( 2002; ). Mechanism of Clostridum difficile toxin A-induced apoptosis in T84 cells. J Infect Dis 186, 1438–1447.[CrossRef]
    [Google Scholar]
  6. Brito, G. A., Carneiro-Filho, B., Oria, R. B., Destura, R. V., Lima, A. A. & Guerrant, R. L. ( 2005; ). Clostridium difficile toxin A induces intestinal epithelial cell apoptosis and damage: role of Gln and Ala-Gln in toxin A effects. Dig Dis Sci 50, 1271–1278.[CrossRef]
    [Google Scholar]
  7. Burger, S., Tatge, H., Hofmann, F., Just, I. & Gerhard, R. ( 2003; ). Expression of recombinant Clostridium difficile toxin A using the Bacillus megaterium system. Biochem Biophys Res Commun 307, 584–588.[CrossRef]
    [Google Scholar]
  8. Carneiro, B. A., Fujii, J., Brito, G. A., Alcantara, C., Oria, R. B., Lima, A. A., Obrig, T. & Guerrant, R. L. ( 2006; ). Caspase and Bid involvement in Clostridium difficile toxin A-induced apoptosis and modulation of toxin A effects by glutamine and alanyl-glutamine in vivo and in vitro. Infect Immun 74, 81–87.[CrossRef]
    [Google Scholar]
  9. Coleman, M. L. & Olson, M. F. ( 2002; ). Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 9, 493–504.[CrossRef]
    [Google Scholar]
  10. Coniglio, S. J., Jou, T. S. & Symons, M. ( 2001; ). Rac1 protects epithelial cells against anoikis. J Biol Chem 276, 28113–28120.[CrossRef]
    [Google Scholar]
  11. Esteve, P., Embade, N., Perona, R., Jimenez, B., del Peso, L., Leon, J., Arends, M., Miki, T. & Lacal, J. C. ( 1998; ). Rho-regulated signals induce apoptosis in vitro and in vivo by a p53-independent, but Bcl2 dependent pathway. Oncogene 17, 1855–1869.[CrossRef]
    [Google Scholar]
  12. Fiorentini, C., Fabbri, A., Falzano, L., Fattorossi, A., Matarrese, P., Rivabene, R. & Donelli, G. ( 1998; ). Clostridium difficile toxin B induces apoptosis in intestinal cultured cells. Infect Immun 66, 2660–2665.
    [Google Scholar]
  13. Fritz, G. & Kaina, B. ( 2006; ). Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets 6, 1–14.
    [Google Scholar]
  14. Genth, H., Huelsenbeck, J., Hartmann, B., Hofmann, F., Just, I. & Gerhard, R. ( 2006; ). Cellular stability of Rho-GTPases glucosylated by Clostridium difficile toxin B. FEBS Lett 580, 3565–3569.[CrossRef]
    [Google Scholar]
  15. Gerhard, R., Burger, S., Tatge, H., Genth, H., Just, I. & Hofmann, F. ( 2005; ). Comparison of wild type with recombinant Clostridium difficile toxin A. Microb Pathog 38, 77–83.[CrossRef]
    [Google Scholar]
  16. Hall, A. ( 1998; ). Rho GTPases and the actin cytoskeleton. Science 279, 509–514.[CrossRef]
    [Google Scholar]
  17. Hippenstiel, S., Schmeck, B., N'Guessan, P. D., Seybold, J., Krüll, M., Preissner, K., Von Eichel-Streiber, C. & Suttorp, N. ( 2002; ). Rho protein inactivation induced apoptosis of cultured human endothelial cells. Am J Physiol Lung Cell Mol Physiol 283, L830–L838.[CrossRef]
    [Google Scholar]
  18. Ikeda, H., Nagashima, K., Yanase, M., Tomiya, T., Arai, M., Inoue, Y., Tejima, K., Nishikawa, T., Omata, M. & other authors ( 2003; ). Involvement of Rho/Rho kinase pathway in regulation of apoptosis in rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 285, G880–G886.[CrossRef]
    [Google Scholar]
  19. Jaffe, A. B. & Hall, A. ( 2005; ). Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21, 247–269.[CrossRef]
    [Google Scholar]
  20. Just, I. & Gerhard, R. ( 2004; ). Large clostridial cytotoxins. Rev Physiol Biochem Pharmacol 152, 23–47.
    [Google Scholar]
  21. Just, I., Selzer, J., Wilm, M., Von Eichel-Streiber, C., Mann, M. & Aktories, K. ( 1995; ). Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503.[CrossRef]
    [Google Scholar]
  22. Kim, H., Kokkotou, E., Na, X., Rhee, S. H., Moyer, M. P., Pothoulakis, C. & LaMont, J. T. ( 2005; ). Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129, 1875–1888.[CrossRef]
    [Google Scholar]
  23. Lassus, P., Roux, P., Zugasti, O., Philips, A., Fort, P. & Hibner, U. ( 2000; ). Extinction of Rac1 and Cdc42Hs signalling defines a novel p53-dependent apoptotic pathway. Oncogene 19, 2377–2385.[CrossRef]
    [Google Scholar]
  24. Le, S. S., Loucks, F. A., Udo, H., Richardson-Burns, S., Phelps, R. A., Bouchard, R. J., Barth, H., Aktories, K., Tyler, K. L. & other authors ( 2005; ). Inhibition of Rac GTPase triggers a c-Jun and Bim-dependent mitochondrial apoptotic cascade in cerebellar granule neurons. J Neurochem 94, 1025–1039.[CrossRef]
    [Google Scholar]
  25. Li, X., Liu, L., Tupper, J. C., Bannerman, D. D., Winn, R. K., Sebti, S. M., Hamilton, A. D. & Harlan, J. M. ( 2002; ). Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cells. J Biol Chem 277, 15309–15316.[CrossRef]
    [Google Scholar]
  26. Linseman, D. A., Laessig, T., Meintzer, M. K., McClure, M., Barth, H., Aktories, K. & Heidenreich, K. A. ( 2001; ). An essential role for Rac/Cdc42 GTPases in cerebellar granule neuron survival. J Biol Chem 276, 39123–39131.[CrossRef]
    [Google Scholar]
  27. Liu, T. S., Musch, M. W., Sugi, K., Walsh-Reitz, M. M., Ropeleski, M. J., Hendrickson, B. A., Pothoulakis, C., LaMont, J. T. & Chang, E. B. ( 2003; ). Protective role of HSP72 against Clostridium difficile toxin A-induced intestinal epithelial cell dysfunction. Am J Physiol Cell Physiol 284, C1073–C1082.[CrossRef]
    [Google Scholar]
  28. Mahida, Y. R., Galvin, A., Makh, S., Hyde, S., Sanfilippo, L., Borriello, S. P. & Sewell, J. L. ( 1998; ). Effect of Clostridium difficile toxin A on human colonic lamina propria cells: early loss of macrophages followed by T-cell apoptosis. Infect Immun 66, 5462–5469.
    [Google Scholar]
  29. Petit, P., Bréard, J., Montalescot, V., El Hadj, N. B., Levade, T., Popoff, M. & Geny, B. ( 2003; ). Lethal toxin from Clostridium sordellii induces apoptotic cell death by disruption of mitochondrial homeostasis in HL-60 cells. Cell Microbiol 5, 761–771.[CrossRef]
    [Google Scholar]
  30. Qa'Dan, M., Ramsey, M., Daniel, J., Spyres, L. M., Safiejko-Mroczka, B., Ortiz-Leduc, W. & Ballard, J. D. ( 2002; ). Clostridium difficile toxin B activates dual caspase-dependent and caspase-independent apoptosis in intoxicated cells. Cell Microbiol 4, 425–434.[CrossRef]
    [Google Scholar]
  31. Rattan, R., Giri, S., Singh, A. K. & Singh, I. ( 2006; ). Rho/ROCK pathway as a target of tumor therapy. J Neurosci Res 83, 243–255.[CrossRef]
    [Google Scholar]
  32. Ridley, A. J. ( 2001; ). Rho proteins: linking signaling with membrane trafficking. Traffic 2, 303–310.[CrossRef]
    [Google Scholar]
  33. Solomon, K., Webb, J., Ali, N., Robins, R. A. & Mahida, Y. R. ( 2005; ). Monocytes are highly sensitive to Clostridium difficile toxin A-induced apoptotic and nonapoptotic cell death. Infect Immun 73, 1625–1634.[CrossRef]
    [Google Scholar]
  34. Symons, M. ( 1996; ). Rho family GTPases: the cytoskeleton and beyond. Trends Biochem Sci 21, 178–181.[CrossRef]
    [Google Scholar]
  35. Teichert, M., Tatge, H., Schoentaube, J., Just, I. & Gerhard, R. ( 2006; ). Application of mutated Clostridium difficile Toxin A for determination of glucosyltransferase-dependent effects. Infect Immun 74, 6006–6010.[CrossRef]
    [Google Scholar]
  36. Warny, M. & Kelly, C. P. ( 1999; ). Monocytic cell necrosis is mediated by potassium depletion and caspase-like proteases. Am J Physiol 276, C717–C724.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47769-0
Loading
/content/journal/jmm/10.1099/jmm.0.47769-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error