1887

Abstract

serovar Typhimurium ( Typhimurium) is the commonest pathogen causing food-borne disease among humans and animals in Australia. A multiplex PCR-based reverse line blot (mPCR/RLB) system was developed to rapidly identify Typhimurium phage types and strains within them. The system comprised 32 biotin-labelled primer sets and 38 amino-labelled probes, based on sequences that were either phage-type-related or derived from temperate phages ST64B, P22, Gifsy-1 or Gifsy-2. The system was developed and evaluated using 168 . Typhimurium isolates, representing 46 phage types. RLB patterns, based on a combination of positive hybridization and grading of signal intensities, validated by sequencing, differentiated Typhimurium isolates into 102 types. Some clusters contained isolates belonging to a single phage type while others contained isolates belonging to more than one. Most phage types exhibited at least two RLB profiles. The feasibility of this system was evaluated during investigations of three outbreaks, due to two different phage types. Within each outbreak, isolates showed identical RLB patterns, whereas sporadic isolates of corresponding phage types showed various patterns. The mPCR/RLB system was compared with multilocus variable-number tandem-repeat analysis (MLVA). The two methods demonstrated similar discriminatory abilities. Based on these preliminary results, the mPCR/RLB system is a promising tool for molecular identification of most common Typhimurium phage types. It could be used as an alternative to, or in conjunction with, MLVA for rapid strain typing during outbreaks.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47766-0
2008-07-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/7/827.html?itemId=/content/journal/jmm/10.1099/jmm.0.47766-0&mimeType=html&fmt=ahah

References

  1. Anderson E. S., Ward L. R., Saxe M. J., de Sa J. D. 1977; Bacteriophage-typing designations of Salmonella Typhimurium. J Hyg (Lond 78:297–300 [CrossRef]
    [Google Scholar]
  2. Cho S., Boxrud D. J., Bartkus J. M., Whittam T. S., Saeed M. 2007; Multiple-locus variable-number tandem repeat analysis of Salmonella enteritidis isolates from human and non-human sources using a single multiplex PCR. FEMS Microbiol Lett 275:16–23 [CrossRef]
    [Google Scholar]
  3. Davos D. (editor) 2006 Most Common Phage Types from Major Sources p. 10 Annual Report Australian Salmonella Reference Centre, Institute of Medical and Veterinary Science; Adelaide, Australia:
    [Google Scholar]
  4. De Cesare A., Manfreda G., Dambaugh T. R., Guerzoni M. E., Franchini A. 2001; Automated ribotyping and random amplified polymorphic DNA analysis for molecular typing of Salmonella enteritidis and Salmonella Typhimurium strains isolated in Italy. J Appl Microbiol 91:780–785 [CrossRef]
    [Google Scholar]
  5. Fakhr M. K., Nolan L. K., Logue C. M. 2005; Multilocus sequence typing lacks the discriminatory ability of pulsed-field gel electrophoresis for typing Salmonella enterica serovar Typhimurium. J Clin Microbiol 43:2215–2219 [CrossRef]
    [Google Scholar]
  6. Guerra B., Schrors P., Mendoza M. C. 2000; Application of PFGE performed with XbaI to an epidemiological and phylogenetic study of Salmonella serotype Typhimurium. Relations between genetic types and phage types. New Microbiol 23:11–20
    [Google Scholar]
  7. Hu H., Lan R., Reeves P. R. 2002; Fluorescent amplified fragment length polymorphism analysis of Salmonella enterica serovar Typhimurium reveals phage-type- specific markers and potential for microarray typing. J Clin Microbiol 40:3406–3415 [CrossRef]
    [Google Scholar]
  8. Hunter P. R., Gaston M. A. 1988; Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 26:2465–2466
    [Google Scholar]
  9. Jeoffreys N. J., James G. S., Chiew R., Gilbert G. L. 2001; Practical evaluation of molecular subtyping and phage typing in outbreaks of infection due to Salmonella enterica serotype Typhimurium. Pathology 33:66–72
    [Google Scholar]
  10. Kong F., Gilbert G. L. 2006; Multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB) – a practical epidemiological and diagnostic tool. Nat Protoc 1:2668–2680
    [Google Scholar]
  11. Lan R., Stevenson G., Donohoe K., Ward L., Reeves P. R. 2007; Molecular markers with potential to replace phage typing for Salmonella enterica serovar Typhimurium. J Microbiol Methods 68:145–156 [CrossRef]
    [Google Scholar]
  12. Lindstedt B. A. 2005; Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26:2567–2582 [CrossRef]
    [Google Scholar]
  13. Lindstedt B. A., Heir E., Vardund T., Kapperud G. 2000; A variation of the amplified-fragment length polymorphism (AFLP) technique using three restriction endonucleases, and assessment of the enzyme combination BglII-MfeI for AFLP analysis of Salmonella enterica subsp. enterica isolates. FEMS Microbiol Lett 189:19–24
    [Google Scholar]
  14. Lindstedt B. A., Heir E., Gjernes E., Kapperud G. 2003; DNA fingerprinting of Salmonella enterica subsp. enterica serovar Typhimurium with emphasis on phage type DT104 based on variable number of tandem repeat loci. J Clin Microbiol 41:1469–1479 [CrossRef]
    [Google Scholar]
  15. Lindstedt B. A., Vardund T., Aas L., Kapperud G. 2004; Multiple-locus variable-number tandem-repeats analysis of Salmonella enterica subsp. enterica serovar Typhimurium using PCR multiplexing and multicolor capillary electrophoresis. J Microbiol Methods 59:163–172 [CrossRef]
    [Google Scholar]
  16. Liu Y., Lee M. A., Ooi E. E., Mavis Y., Tan A. L., Quek H. H. 2003; Molecular typing of Salmonella enterica serovar Typhi isolates from various countries in Asia by a multiplex PCR assay on variable-number tandem repeats. J Clin Microbiol 41:4388–4394 [CrossRef]
    [Google Scholar]
  17. Mikasova E., Drahovska H., Szemes T., Kuchta T., Karpiskova R., Sasik M., Turna J. 2005; Characterization of Salmonella enterica serovar Typhimurium strains of veterinary origin by molecular typing methods. Vet Microbiol 109:113–120 [CrossRef]
    [Google Scholar]
  18. Millemann Y., Lesage M. C., Chaslus-Dancla E., Lafont J. P. 1995; Value of plasmid profiling, ribotyping, and detection of IS200 for tracing avian isolates of Salmonella Typhimurium and S. enteritidis . J Clin Microbiol 33:173–179
    [Google Scholar]
  19. Nastasi A., Mammina C. 1995; Epidemiological evaluation by PCR ribotyping of sporadic and outbreak-associated strains of Salmonella enterica serotype Typhimurium. Res Microbiol 146:99–106 [CrossRef]
    [Google Scholar]
  20. Popoff M. Y., Bockemuhl J., Gheesling L. L. 2004; Supplement 2002 (no. 46) to the Kauffmann-White scheme. Res Microbiol 155:568–570 [CrossRef]
    [Google Scholar]
  21. Ross I. L., Heuzenroeder M. W. 2005; Discrimination within phenotypically closely related definitive types of Salmonella enterica serovar Typhimurium by the multiple amplification of phage locus typing technique. J Clin Microbiol 43:1604–1611 [CrossRef]
    [Google Scholar]
  22. Soria G., Barbe J., Gibert I. 1994; Molecular fingerprinting of Salmonella Typhimurium by IS200-typing as a tool for epidemiological and evolutionary studies. Microbiologia 10:57–68
    [Google Scholar]
  23. Witonski D., Stefanova R., Ranganathan A., Schutze G. E., Eisenach K. D., Cave M. D. 2006; Variable-number tandem repeats that are useful in genotyping isolates of Salmonella enterica subsp. enterica serovars Typhimurium and Newport. J Clin Microbiol 44:3849–3854 [CrossRef]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.47766-0
Loading
/content/journal/jmm/10.1099/jmm.0.47766-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error