1887

Abstract

is the main cause of bacterial acute gastroenteritis worldwide. In its colonization of the host intestinal tract, it encounters secreted mucins in the mucus layer and surface mucins in the epithelial cells. Mucins are complex glycoproteins that comprise the major component of mucus and give mucus its viscous consistency. MUC2 is the most abundant secreted mucin in the human intestine; it is a major chemoattractant for , and the bacterium binds to it. There are no studies on the transcriptional response of the bacterium to this mucin. Here, cell-culture techniques and quantitative RT-PCR were used to characterize the effects of MUC2 on growth and the changes in expression of 20 genes related to various functions. The genes encoding cytolethal distending toxin protein (), vacuolating cytotoxin (), lipoprotein (), invasion antigen (), the multidrug efflux system (), putative mucin-degrading enzymes (, , and ), flagellin A () and putative rod-shape-determining proteins ( and ) were upregulated, whereas those encoding adhesion fibronectin-binding protein () and sialic acid synthase () were downregulated. These results showed that utilizes MUC2 as an environmental cue for the modulation of expression of genes with various functions including colonization and pathogenicity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47752-0
2008-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/7/795.html?itemId=/content/journal/jmm/10.1099/jmm.0.47752-0&mimeType=html&fmt=ahah

References

  1. Allos B. M. 2001; Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 32:1201–1206 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Ashgar S. S. A., Oldfield N. J., Wooldridge K. G., Jones M. A., Irving G. J., Turner D. P. J., Ala'Aldeen D. A. A. 2007; CapA, an autotransporter protein of Campylobacter jejuni , mediates association with human epithelial cells and colonization of the chicken gut. J Bacteriol 189:1856–1865 [CrossRef]
    [Google Scholar]
  4. Aspholm-Hurtig M., Dailide G., Lahmann M., Kalia A., Ilver D., Roche N., Vikström S., Sjöström R., Lindén S. other authors 2004; Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 305:519–522 [CrossRef]
    [Google Scholar]
  5. Bobek L. A., Situ H. 2003; MUC7 20-mer: investigation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action. Antimicrob Agents Chemother 47:643–652 [CrossRef]
    [Google Scholar]
  6. Chen L., Yang J., Yu J., Yao Z., Sun L., Shen Y., Jin Q. 2005; VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325–D328 [CrossRef]
    [Google Scholar]
  7. Davies J. R., Carlstedt I. 2000; Isolation of large gel-forming mucins. Methods Mol Biol 125:3–13
    [Google Scholar]
  8. del Rocio Leon-Kempis M., Guccione E., Mulholland F., Williamson M. P., Kelly D. J. 2006; The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol Microbiol 60:1262–1275 [CrossRef]
    [Google Scholar]
  9. Egelman E. H. 2003; Actin's prokaryotic homologs. Curr Opin Struct Biol 13:244–248 [CrossRef]
    [Google Scholar]
  10. Ferrero R. L., Lee A. 1988; Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rod-shaped bacteria. J Gen Microbiol 134:53–59
    [Google Scholar]
  11. Gerharz E. W., Turner W. H., Kälble T., Woodhouse C. R. 2003; Metabolic and functional consequences of urinary tract reconstruction with bowel. BJU Int 91:143–149 [CrossRef]
    [Google Scholar]
  12. Guerry P., Szymanski C. M., Prendergast M. M., Hickey T. E., Ewing C. P., Pattarini D. L., Moran A. P. 2002; Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro . Infect Immun 70:787–793 [CrossRef]
    [Google Scholar]
  13. Hendrixson D. R., Akerley B. J., DiRita V. J. 2001; Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40:214–224 [CrossRef]
    [Google Scholar]
  14. Hugdahl M. B., Beery J. T., Doyle M. P. 1988; Chemotactic behavior of Campylobacter jejuni . Infect Immun 56:1560–1566
    [Google Scholar]
  15. Jin S., Song Y. C., Emili A., Sherman P. M., Chan V. L. 2003; JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90 α and triggers signalling pathways leading to the activation of NF- κ B and p38 MAP kinase in epithelial cells. Cell Microbiol 5:165–174 [CrossRef]
    [Google Scholar]
  16. Kakuda T., DiRita V. J. 2006; Cj1496c encodes a Campylobacter jejuni glycoprotein that influences invasion of human epithelial cells and colonization of the chick gastrointestinal tract. Infect Immun 74:4715–4723 [CrossRef]
    [Google Scholar]
  17. Karlsson N. G., Herrmann A., Karlsson H., Johansson M. E. V., Carlstedt I., Hansson G. C. 1997; The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. A study of O -linked oligosaccharides by a mass spectrometric approach. J Biol Chem 272:27025–27034 [CrossRef]
    [Google Scholar]
  18. Karlyshev A. V., Linton D., Gregson N. A., Lastovica A. J., Wren B. W. 2000; Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol Microbiol 35:529–541
    [Google Scholar]
  19. Kawakubo M., Ito Y., Okimura Y., Kobayashi M., Sakura K., Kasama S., Fukuda M. N., Fukuda M., Katsuyama T., Nakayama J. 2004; Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science 305:1003–1006 [CrossRef]
    [Google Scholar]
  20. Konkel M. E., Garvis S. G., Tipton S. L., Anderson D. E. Jr, Cieplak W. Jr 1997; Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni . Mol Microbiol 24:953–963 [CrossRef]
    [Google Scholar]
  21. Konkel M. E., Kim B. J., Rivera-Amill V., Garvis S. G. 1999; Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol 32:691–701 [CrossRef]
    [Google Scholar]
  22. Krause-Gruszczynska M., van Alphen L. B., Oyarzabal O. A., Alter T., Hänel I., Schliephake A., König W., van Putten J. P., Konkel M. E., Backert S. 2007; Expression patterns and role of the CadF protein in Campylobacter jejuni and Campylobacter coli . FEMS Microbiol Lett 274:9–16 [CrossRef]
    [Google Scholar]
  23. Lara-Tejero M., Galan J. E. 2001; CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun 69:4358–4365 [CrossRef]
    [Google Scholar]
  24. Lecuit M., Abachin E., Martin A., Poyart C., Pochart P., Suarez F., Bengoufa D., Feuillard J., Lavergne A. other authors 2004; Immunoproliferative small intestinal disease associated with Campylobacter jejuni . N Engl J Med 350:239–248 [CrossRef]
    [Google Scholar]
  25. Lee R. B., Hassane D. C., Cottle D. L., Pickett C. L. 2003; Interactions of Campylobacter jejuni cytolethal distending toxin subunits CdtA and CdtC with HeLa cells. Infect Immun 71:4883–4890 [CrossRef]
    [Google Scholar]
  26. Lin J., Michel L. O., Zhang Q. 2002; CmeABC functions as a multidrug efflux system in Campylobacter jejuni . Antimicrob Agents Chemother 46:2124–2131 [CrossRef]
    [Google Scholar]
  27. Lin J., Cagliero C., Guo B., Barton Y.-W., Maurel M.-C., Payot S., Zhang Q. 2005; Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni . J Bacteriol 187:7417–7424 [CrossRef]
    [Google Scholar]
  28. Lindén S., Mahdavi J., Semino-Mora C., Olsen C., Carlstedt I., Boren T., Dubois A. 2008; Role of ABO secretor status in mucosal innate immunity and H. pylori infection. PLoS Pathog 4:e2 [CrossRef]
    [Google Scholar]
  29. Linton D., Karlyshev A. V., Hitchen P. G., Morris H. R., Dell A., Gregson N. A., Wren B. W. 2000; Multiple N -acetyl neuraminic acid synthetase ( neuB ) genes in Campylobacter jejuni : identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol Microbiol 35:1120–1134 [CrossRef]
    [Google Scholar]
  30. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ C T method. Methods 25:402–408 [CrossRef]
    [Google Scholar]
  31. Mamelli L., Pages J.-M., Konkel M. E., Bolla J.-M. 2006; Expression and purification of native and truncated forms of CadF, an outer membrane protein of Campylobacter . Int J Biol Macromol 39:135–140 [CrossRef]
    [Google Scholar]
  32. McAuley J. L., Linden S. K., Png C. W., King R. M., Pennington H. L., Gendler S. J., Florin T. H., Hill G. R., Korolik V., McGuckin M. A. 2007; MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Invest 117:2313–2324 [CrossRef]
    [Google Scholar]
  33. McSweegan E., Walker R. I. 1986; Identification and characterization of two Campylobacter jejuni adhesins for cellular and mucous substrates. Infect Immun 53:141–148
    [Google Scholar]
  34. Monteville M. R., Konkel M. E. 2002; Fibronectin-facilitated invasion of T84 eukaryotic cells by Campylobacter jejuni occurs preferentially at the basolateral cell surface. Infect Immun 70:6665–6671 [CrossRef]
    [Google Scholar]
  35. Moser I., Schroeder W., Salnikow J. 1997; Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT 407 cell membranes. FEMS Microbiol Lett 157:233–238 [CrossRef]
    [Google Scholar]
  36. Nabi G., N'Dow J., Hasan T. S., Booth I. R., Cash P. 2005; Proteomic analysis of urine in patients with intestinal segments transposed into the urinary tract. Proteomics 5:1729–1733 [CrossRef]
    [Google Scholar]
  37. Neutra M. R., Forstner J. F. 1987; Gastrointestinal mucus: synthesis, secretion, and function. In Physiology of the Gastrointestinal Tract pp 975–1009 Edited by Jonson L. R. New York: Raven Press;
    [Google Scholar]
  38. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T. other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668 [CrossRef]
    [Google Scholar]
  39. Pei Z., Blaser M. J. 1993; PEB1, the major cell-binding factor of Campylobacter jejuni , is a homolog of the binding component in Gram-negative nutrient transport systems. J Biol Chem 268:18717–18725
    [Google Scholar]
  40. Pfaffl M. W., Horgan G. W., Dempfle L. 2002; Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36 [CrossRef]
    [Google Scholar]
  41. Robbe C., Capon C., Coddeville B., Michalski J.-C. 2004; Structural diversity and specific distribution of O -glycans in normal human mucins along the intestinal tract. Biochem J 384:307–316 [CrossRef]
    [Google Scholar]
  42. Rozen S., Skaletsky H. J. 1998; Primer3. Code available at and BioManager by ANGIS http://primer3.sourceforge.net/ http://www.angis.org.au
  43. Sampathkumar B., Napper S., Carrillo C. D., Willson P., Taboada E., Nash J. H. E., Potter A. A., Babiuk L. A., Allan B. J. 2006; Transcriptional and translational expression patterns associated with immobilized growth of Campylobacter jejuni . Microbiology 152:567–577 [CrossRef]
    [Google Scholar]
  44. Schulz B. L., Packer N. H., Karlsson N. G. 2002; Small-scale analysis of O -linked oligosaccharides from glycoproteins and mucins separated by gel electrophoresis. Anal Chem 74:6088–6097 [CrossRef]
    [Google Scholar]
  45. Silva A. J., Pham K., Benitez J. A. 2003; Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae . Microbiology 149:1883–1891 [CrossRef]
    [Google Scholar]
  46. Sommerlad S. M., Hendrixson D. R. 2007; Analysis of the roles of FlgP and FlgQ in flagellar motility of Campylobacter jejuni . J Bacteriol 189:179–186 [CrossRef]
    [Google Scholar]
  47. Strugala V., Allen A., Dettmar Peter W., Pearson Jeffrey P. 2003; Colonic mucin: methods of measuring mucus thickness. Proc Nutr Soc 62:237–243 [CrossRef]
    [Google Scholar]
  48. Szymanski C. M., King M., Haardt M., Armstrong G. D. 1995; Campylobacter jejuni motility and invasion of Caco-2 cells. Infect Immun 63:4295–4300
    [Google Scholar]
  49. Wassenaar T. M., van der Zeijst B. A., Ayling R., Newell D. G. 1993; Colonisation of chicks by motility mutants of C. jejuni demonstrates the importance of flagellin A expression. J Gen Microbiol 139:1171–1175 [CrossRef]
    [Google Scholar]
  50. Whitehouse C. A., Balbo P. B., Pesci E. C., Cottle D. L., Mirabito P. M., Pickett C. L. 1998; Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infect Immun 66:1934–1940
    [Google Scholar]
  51. Yuki N., Koga M. 2006; Bacterial infections in Guillain–Barré and Fisher syndromes. Curr Opin Neurol 19:451–457 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47752-0
Loading
/content/journal/jmm/10.1099/jmm.0.47752-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error