Paradoxically high resistance of natural killer T (NKT) cell-deficient mice to : another aspect of NKT cells for modulation of host responses Free

Abstract

In the present study, we examined the roles of natural killer T (NKT) cells in host defence against in a mouse model. The survival rate of NKT cell-deficient J281 knock-out (KO) mice was significantly higher than that of wild-type mice. There was no bacterial overgrowth in the lungs, but J281 KO mice showed enhanced pulmonary clearance at a later stage of infection, compared with their wild-type counterparts. The severity of lung injury in -infected J281 KO mice was less, as indicated by lung permeability measurements, such as lung weight and bronchoalveolar lavage fluid albumin concentration. Recruitment of inflammatory cells in the lungs was approximately twofold greater in J281 KO mice on day 3. Interestingly, higher values of interleukin (IL)-1 and IL-18, and increased caspase-1 activity were noted in the lungs of J281 KO mice from an early time point (6 h). Exogenous -galactosylceramide, a ligand of NKT cells, induced IL-12 and gamma interferon at 6 h, but suppressed IL-1 at later time points in wild-type, whereas no effects were evident in J281 KO mice, as expected. Systemic administration of heat-killed , but not LPS, reproduced exaggerated production of IL-1 in the lungs of J281 KO mice. These results demonstrate that NKT cells play a role in host defence against , which is characterized by enhanced lung injury and decreased accumulation of inflammatory cells in the lungs. The regulation of IL-1, IL-18 and caspase-1 may be associated with the modulating effect of host responses by NKT cells.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47747-0
2008-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/11/1340.html?itemId=/content/journal/jmm/10.1099/jmm.0.47747-0&mimeType=html&fmt=ahah

References

  1. Akamine M., Higa F., Arakaki N., Kawakami K., Takeda K., Saito A. 2005; Differential roles of Toll-like receptors 2 and 4 in in vitro responses of macrophages to Legionella pneumophila . Infect Immun 73:352–361 [CrossRef]
    [Google Scholar]
  2. Archer K. A., Roy C. R. 2006; MyD88-dependent responses involving Toll-like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires' disease. Infect Immun 74:3325–3333 [CrossRef]
    [Google Scholar]
  3. Bartlett J. G., Mundy L. M. 1995; Community-acquired pneumonia. N Engl J Med 333:1618–1624 [CrossRef]
    [Google Scholar]
  4. Bilenki L., Wang S., Yang J., Fan Y., Joyee A. G., Yang X. 2005; NK T cell activation promotes Chlamydia trachomatis infection in vivo . J Immunol 175:3197–3206 [CrossRef]
    [Google Scholar]
  5. Blanchard D. K., Friedman H., Stewart W. E. II, Klein T. W., Djeu J. Y. 1988; Role of gamma interferon in induction of natural killer activity by Legionella pneumophila in vitro and in an experimental murine infection model. Infect Immun 56:1187–1193
    [Google Scholar]
  6. Braedel-Ruoff S., Faigle M., Hilf N., Neumeister B., Schild H. 2005; Legionella pneumophila mediated activation of dendritic cells involves CD14 and TLR2. J Endotoxin Res 11:89–96 [CrossRef]
    [Google Scholar]
  7. Brieland J. K., Remick D. G., LeGendre M. L., Engleberg N. C., Fantone J. C. 1998; In vivo regulation of replicative Legionella pneumophila lung infection by endogenous interleukin-12. Infect Immun 66:65–69
    [Google Scholar]
  8. Brieland J. K., Jackson C., Hurst S., Loebenberg D., Muchamuel T., Debets R., Kastelein R., Churakova T., Abrams J. other authors 2000; Immunomodulatory role of endogenous interleukin-18 in gamma interferon-mediated resolution of replicative Legionella pneumophila lung infection. Infect Immun 68:6567–6573 [CrossRef]
    [Google Scholar]
  9. Byrne B., Swanson M. S. 1998; Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66:3029–3034
    [Google Scholar]
  10. Cui J., Shin T., Kawano T., Sato H., Kondo E., Toura I., Kaneko Y., Koseki H., Kanno M., Taniguchi M. 1997; Requirement for V α 14 NKT cells in IL-12-mediated rejection of tumors. Science 278:1623–1626 [CrossRef]
    [Google Scholar]
  11. Diez E., Lee S. H., Gauthier S., Yaraghi Z., Tremblay M., Vidal S., Gros P. 2003; Birc1e is the gene within the lgn1 locus associated with resistance to Legionella pneumophila . Nat Genet 33:55–60
    [Google Scholar]
  12. el-Ebiary M., Sarmiento X., Torres A., Nogue S., Mesalles E., Bodi M., Almirall J. 1997; Prognostic factors of severe Legionella pneumonia requiring admission to ICU. Am J Respir Crit Care Med 156:1467–1472 [CrossRef]
    [Google Scholar]
  13. Exley M., Garcia J., Balk S. P., Porcelli S. 1997; Requirements for CD1d recognition by human invariant V α 24+ CD4CD8− T cells. J Exp Med 186:109–120 [CrossRef]
    [Google Scholar]
  14. Fang G. D., Fine M., Orloff J., Arisumi D., Yu V. L., Kapoor W., Grayston J. T., Wang S. P., Kohler R. other authors 1990; New and emerging etiologies for community-acquired pneumonia with implications for therapy. A prospective multicenter study of 359 cases. Medicine (Baltimore 69:307–316
    [Google Scholar]
  15. Fink S. L., Cookson B. T. 2005; Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916 [CrossRef]
    [Google Scholar]
  16. Franchi L., Am A., Body-Malapel M., Kanneganti T. D., Ozoren N., Jagirdar R., Inohara N., Vandenabeele P., Bertin J. other authors 2006; Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1 β in salmonella-infected macrophages. Nat Immunol 7:576–582 [CrossRef]
    [Google Scholar]
  17. Fuse E. T., Tateda K., Kikuchi Y., Matsumoto T., Gondaira F., Azuma A., Kudoh S., Standiford T. J., Yamaguchi K. 2007; Role of Toll-like receptor 2 in recognition of Legionella pneumophila in a murine pneumonia model. J Med Microbiol 56:305–312 [CrossRef]
    [Google Scholar]
  18. Gebran S. J., Yamamoto Y., Newton C., Klein T. W., Friedman H. 1994; Inhibition of Legionella pneumophila growth by gamma interferon in permissive A/J mouse macrophages: role of reactive oxygen species, nitric oxide, tryptophan, and iron(III). Infect Immun 62:3197–3205
    [Google Scholar]
  19. Girard R., Pedron T., Uematsu S., Balloy V., Chignard M., Akira S., Chaby R. 2003; Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J Cell Sci 116:293–302 [CrossRef]
    [Google Scholar]
  20. Godfrey D. I., Kronenberg M. 2004; Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388 [CrossRef]
    [Google Scholar]
  21. Gonzalez-Aseguinolaza G., de Oliveira C., Tomaska M., Hong S., Bruna-Romero O., Nakayama T., Taniguchi M., Bendelac A., Van Kaer L. other authors 2000; α -Galactosylceramide-activated V α 14 natural killer T cells mediate protection against murine malaria. Proc Natl Acad Sci U S A 97:8461–8466 [CrossRef]
    [Google Scholar]
  22. Growney J. D., Dietrich W. F. 2000; High-resolution genetic and physical map of the Lgn1 interval in C57BL/6J implicates Naip2 or Naip5 in Legionella pneumophila pathogenesis. Genome Res 10:1158–1171 [CrossRef]
    [Google Scholar]
  23. Horwitz M. A., Silverstein S. C. 1980; Legionnaires' disease bacterium ( Legionella pneumophila ) multiples intracellularly in human monocytes. J Clin Invest 66:441–450 [CrossRef]
    [Google Scholar]
  24. Ishikawa H., Hisaeda H., Taniguchi M., Nakayama T., Sakai T., Maekawa Y., Nakano Y., Zhang M., Zhang T. other authors 2000; CD4+ V α 14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major . Int Immunol 12:1267–1274 [CrossRef]
    [Google Scholar]
  25. Kawakami K., Kinjo Y., Uezu K., Yara S., Miyagi K., Koguchi Y., Nakayama T., Taniguchi M., Saito A. 2001; Monocyte chemoattractant protein-1-dependent increase of V α 14 NKT cells in lungs and their roles in Th1 response and host defense in cryptococcal infection. J Immunol 167:6525–6532 [CrossRef]
    [Google Scholar]
  26. Kawakami K., Yamamoto N., Kinjo Y., Miyagi K., Nakasone C., Uezu K., Kinjo T., Nakayama T., Taniguchi M., Saito A. 2003; Critical role of V α 14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol 33:3322–3330 [CrossRef]
    [Google Scholar]
  27. Knirel Y. A., Moll H., Zahringer U. 1996; Structural study of a highly O -acetylated core of Legionella pneumophila serogroup 1 lipopolysaccharide. Carbohydr Res 293:223–234 [CrossRef]
    [Google Scholar]
  28. Koseki H., Asano H., Inaba T., Miyashita N., Moriwaki K., Lindahl K. F., Mizutani Y., Imai K., Taniguchi M. 1991; Dominant expression of a distinctive V14+ T-cell antigen receptor alpha chain in mice. Proc Natl Acad Sci U S A 88:7518–7522 [CrossRef]
    [Google Scholar]
  29. Marston B. J., Plouffe J. F., File T. M. Jr, Hackman B. A., Salstrom S. J., Lipman H. B., Kolczak M. S., Breiman R. F. 1997; Incidence of community-acquired pneumonia requiring hospitalization. Results of a population-based active surveillance study in Ohio. Arch Intern Med 157:1709–1718 [CrossRef]
    [Google Scholar]
  30. Miao E. A., Alpuche-Aranda C. M., Dors M., Clark A. E., Bader M. W., Miller S. I., Aderem A. 2006; Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1 β via Ipaf. Nat Immunol 7:569–575 [CrossRef]
    [Google Scholar]
  31. Mody C. H., Paine R. III, Shahrabadi M. S., Simon R. H., Pearlman E., Eisenstein B. I., Toews G. B. 1993; Legionella pneumophila replicates within rat alveolar epithelial cells. J Infect Dis 167:1138–1145 [CrossRef]
    [Google Scholar]
  32. Moll H., Knirel Y. A., Helbig J. H., Zahringer U. 1997; Identification of an α -d-Manp-(1→8)-Kdo disaccharide in the inner core region and the structure of the complete core region of the Legionella pneumophila serogroup 1 lipopolysaccharide. Carbohydr Res 304:91–95 [CrossRef]
    [Google Scholar]
  33. Molofsky A. B., Byrne B. G., Whitfield N. N., Madigan C. A., Fuse E. T., Tateda K., Swanson M. S. 2006; Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203:1093–1104 [CrossRef]
    [Google Scholar]
  34. Nash T. W., Libby D. M., Horwitz M. A. 1984; Interaction between the legionnaires' disease bacterium ( Legionella pneumophila ) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J Clin Invest 74:771–782 [CrossRef]
    [Google Scholar]
  35. Nieuwenhuis E. E., Matsumoto T., Exley M., Schleipman R. A., Glickman J., Bailey D. T., Corazza N., Colgan S. P., Onderdonk A. B., Blumberg R. S. 2002; CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat Med 8:588–593 [CrossRef]
    [Google Scholar]
  36. Pedro-Botet M. L., Sabria-Leal M., Sopena N., Manterola J. M., Morera J., Blavia R., Padilla E., Matas L., Gimeno J. M. 1998; Role of immunosuppression in the evolution of Legionnaires' disease. Clin Infect Dis 26:14–19 [CrossRef]
    [Google Scholar]
  37. Reingold A. L. 1988; Role of legionellae in acute infections of the lower respiratory tract. Rev Infect Dis 10:1018–1028 [CrossRef]
    [Google Scholar]
  38. Rello J., Quintana E., Ausina V., Net A., Prats G. 1993; A three-year study of severe community-acquired pneumonia with emphasis on outcome. Chest 103:232–235 [CrossRef]
    [Google Scholar]
  39. Ronet C., Darche S., Leite de Moraes M., Miyake S., Yamamura T., Louis J. A., Kasper L. H., Buzoni-Gatel D. 2005; NKT cells are critical for the initiation of an inflammatory bowel response against Toxoplasma gondii . J Immunol 175:899–908 [CrossRef]
    [Google Scholar]
  40. Salins S., Newton C., Widen R., Klein T. W., Friedman H. 2001; Differential induction of gamma interferon in Legionella pneumophila -infected macrophages from BALB/c and A/J mice. Infect Immun 69:3605–3610 [CrossRef]
    [Google Scholar]
  41. Skerrett S. J., Martin T. R. 1994; Intratracheal interferon-gamma augments pulmonary defenses in experimental legionellosis. Am J Respir Crit Care Med 149:50–58 [CrossRef]
    [Google Scholar]
  42. Sporri R., Joller N., Albers U., Hilbi H., Oxenius A. 2006; MyD88-dependent IFN- γ production by NK cells is key for control of Legionella pneumophila infection. J Immunol 176:6162–6171 [CrossRef]
    [Google Scholar]
  43. Swanson M. S., Molofsky A. B. 2005; Autophagy and inflammatory cell death, partners of innate immunity. Autophagy 1:174–176 [CrossRef]
    [Google Scholar]
  44. Szalay G., Ladel C. H., Blum C., Brossay L., Kronenberg M., Kaufmann S. H. 1999; Cutting edge: anti-CD1 monoclonal antibody treatment reverses the production patterns of TGF- β 2 and Th1 cytokines and ameliorates listeriosis in mice. J Immunol 162:6955–6958
    [Google Scholar]
  45. Taniguchi M., Nakayama T. 2000; Recognition and function of V α 14 NKT cells. Semin Immunol 12:543–550 [CrossRef]
    [Google Scholar]
  46. Taniguchi M., Harada M., Kojo S., Nakayama T., Wakao H. 2003; The regulatory role of V α 14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21:483–513 [CrossRef]
    [Google Scholar]
  47. Tateda K., Matsumoto T., Ishii Y., Furuya N., Ohno A., Miyazaki S., Yamaguchi K. 1998; Serum cytokines in patients with Legionella pneumonia: relative predominance of Th1-type cytokines. Clin Diagn Lab Immunol 5:401–403
    [Google Scholar]
  48. Tateda K., Moore T. A., Deng J. C., Newstead M. W., Zeng X., Matsukawa A., Swanson M. S., Yamaguchi K., Standiford T. J. 2001; Early recruitment of neutrophils determines subsequent T1/T2 host responses in a murine model of Legionella pneumophila pneumonia. J Immunol 166:3355–3361 [CrossRef]
    [Google Scholar]
  49. Tateda K., Deng J. C., Moore T. A., Newstead M. W., Paine R. III, Kobayashi N., Yamaguchi K., Standiford T. J. 2003; Hyperoxia mediates acute lung injury and increased lethality in murine Legionella pneumonia: the role of apoptosis. J Immunol 170:4209–4216 [CrossRef]
    [Google Scholar]
  50. Tkatch L. S., Kusne S., Irish W. D., Krystofiak S., Wing E. 1998; Epidemiology of legionella pneumonia and factors associated with legionella-related mortality at a tertiary care center. Clin Infect Dis 27:1479–1486 [CrossRef]
    [Google Scholar]
  51. van der Vliet H. J., Molling J. W., von Blomberg B. M., Nishi N., Kolgen W., van den Eertwegh A. J., Pinedo H. M., Giaccone G., Scheper R. J. 2004; The immunoregulatory role of CD1d-restricted natural killer T cells in disease. Clin Immunol 112:8–23 [CrossRef]
    [Google Scholar]
  52. Wright E. K., Goodart S. A., Growney J. D., Hadinoto V., Endrizzi M. G., Long E. M., Sadigh K., Abney A. L., Bernstein-Hanley I., Dietrich W. F. 2003; Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila . Curr Biol 13:27–36 [CrossRef]
    [Google Scholar]
  53. Zamboni D. S., Kobayashi K. S., Kohlsdorf T., Ogura Y., Long E. M., Vance R. E., Kuida K., Mariathasan S., Dixit V. M. other authors 2006; The birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47747-0
Loading
/content/journal/jmm/10.1099/jmm.0.47747-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed