1887

Abstract

The pathogenicity of depends on the large clostridial glucosylating toxins A and B (TcdA and TcdB). The proteins accomplish their own uptake by a modular structure comprising a catalytic and a binding/translocation domain. Based on a proteolytic processing step solely the catalytic domain reaches the cytosol. Within the cells, the glucosyltransferases inactivate small GTPases by mono--glucosylation. Here, a short overview is given regarding latest insights into the intramolecular processing, which is mediated by an intrinsic protease activity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47742-0
2008-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/690.html?itemId=/content/journal/jmm/10.1099/jmm.0.47742-0&mimeType=html&fmt=ahah

References

  1. Aktories, K. ( 2007; ). Self-cutting to kill: new insights into the processing of Clostridium difficile toxins. ACS Chem Biol 2, 228–230.[CrossRef]
    [Google Scholar]
  2. Barroso, L. A., Moncrief, J. S., Lyerly, D. M. & Wilkins, T. D. ( 1994; ). Mutagenesis of the Clostridium difficile toxin B gene and effect on cytotoxic activity. Microb Pathog 16, 297–303.[CrossRef]
    [Google Scholar]
  3. Barth, H., Pfeifer, G., Hofmann, F., Maier, E., Benz, R. & Aktories, K. ( 2001; ). Low pH-induced formation of ion channels by Clostridium difficile toxin B in target cells. J Biol Chem 276, 10670–10676.[CrossRef]
    [Google Scholar]
  4. Bartlett, J. G. & Perl, T. M. ( 2005; ). The new Clostridium difficile – what does it mean? N Engl J Med 353, 2503–2505.[CrossRef]
    [Google Scholar]
  5. Bartlett, J. G., Onderdonk, A. B., Cisneros, R. L. & Kasper, D. L. ( 1977; ). Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. J Infect Dis 136, 701–705.[CrossRef]
    [Google Scholar]
  6. Busch, C., Hofmann, F., Selzer, J., Munro, J., Jeckel, D. & Aktories, K. ( 1998; ). A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins. J Biol Chem 273, 19566–19572.[CrossRef]
    [Google Scholar]
  7. Dvorsky, R. & Ahmadian, M. R. ( 2004; ). Always look on the bright site of Rho: structural implications for a conserved intermolecular interface. EMBO Rep 5, 1130–1136.[CrossRef]
    [Google Scholar]
  8. Egerer, M., Giesemann, T., Jank, T., Satchell, K. J. & Aktories, K. ( 2007; ). Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on a cysteine protease activity. J Biol Chem 282, 25314–25321.[CrossRef]
    [Google Scholar]
  9. Etienne-Manneville, S. & Hall, A. ( 2002; ). Rho GTPases in cell biology. Nature 420, 629–635.[CrossRef]
    [Google Scholar]
  10. Faust, C., Ye, B. & Song, K.-P. ( 1998; ). The enzymatic domain of Clostridium difficile toxin A is located within its N-terminal region. Biochem Biophys Res Commun 251, 100–105.[CrossRef]
    [Google Scholar]
  11. Florin, I. & Thelestam, M. ( 1983; ). Internalization of Clostridium difficile cytotoxin into cultured human lung fibroblasts. Biochim Biophys Acta 763, 383–392.[CrossRef]
    [Google Scholar]
  12. Frisch, C., Gerhard, R., Aktories, K., Hofmann, F. & Just, I. ( 2003; ). The complete receptor-binding domain of Clostridium difficile toxin A is required for endocytosis. Biochem Biophys Res Commun 300, 706–711.[CrossRef]
    [Google Scholar]
  13. Geyer, M., Wilde, C., Selzer, J., Aktories, K. & Kalbitzer, H. R. ( 2003; ). Glucosylation of Ras by Clostridium sordellii lethal toxin: consequences for the effector loop conformations observed by NMR spectroscopy. Biochemistry 42, 11951–11959.[CrossRef]
    [Google Scholar]
  14. Giesemann, T., Jank, T., Gerhard, R., Maier, E., Just, I., Benz, R. & Aktories, K. ( 2006; ). Cholesterol-dependent pore formation of Clostridium difficile toxin A. J Biol Chem 281, 10808–10815.[CrossRef]
    [Google Scholar]
  15. Greco, A., Ho, J. G., Lin, S. J., Palcic, M. M., Rupnik, M. & Ng, K. K. ( 2006; ). Carbohydrate recognition by Clostridium difficile toxin A. Nat Struct Mol Biol 13, 460–461.[CrossRef]
    [Google Scholar]
  16. Hammond, G. A. & Johnson, J. L. ( 1995; ). The toxigenic element of Clostridium difficile strain VPI 10463. Microb Pathog 19, 203–213.[CrossRef]
    [Google Scholar]
  17. Ho, J. G., Greco, A., Rupnik, M. & Ng, K. K. ( 2005; ). Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc Natl Acad Sci U S A 102, 18373–18378.[CrossRef]
    [Google Scholar]
  18. Hofmann, F., Busch, C., Prepens, U., Just, I. & Aktories, K. ( 1997; ). Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J Biol Chem 272, 11074–11078.[CrossRef]
    [Google Scholar]
  19. Hundsberger, T., Braun, V., Weidmann, M., Leukel, P., Sauerborn, M. & von Eichel-Streiber, C. ( 1997; ). Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem 244, 735–742.[CrossRef]
    [Google Scholar]
  20. Jank, T., Reinert, D. J., Giesemann, T., Schulz, G. E. & Aktories, K. ( 2005; ). Change of the donor substrate specificity of Clostridium difficile toxin B by site-directed mutagenesis. J Biol Chem 280, 37833–37838.[CrossRef]
    [Google Scholar]
  21. Jank, T., Giesemann, T. & Aktories, K. ( 2007a; ). Clostridium difficile glucosyltransferase toxin B – essential amino acids for substrate-binding. J Biol Chem 282, 35222–35331.[CrossRef]
    [Google Scholar]
  22. Jank, T., Giesemann, T. & Aktories, K. ( 2007b; ). Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiology 17, 15R–22R.[CrossRef]
    [Google Scholar]
  23. Just, I. & Gerhard, R. ( 2004; ). Large clostridial cytotoxins. Rev Physiol Biochem Pharmacol 152, 23–47.
    [Google Scholar]
  24. Just, I., Selzer, J., Wilm, M., von Eichel-Streiber, C., Mann, M. & Aktories, K. ( 1995; ). Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503.[CrossRef]
    [Google Scholar]
  25. Krivan, H. C., Clark, G. F., Smith, D. F. & Wilkins, T. D. ( 1986; ). Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Galα1-3Galβ1-4GlcNAc. Infect Immun 53, 573–581.
    [Google Scholar]
  26. Larsen, R. D., Rivera-Marrero, C. A., Ernst, L. K., Cummings, R. D. & Lowe, J. B. ( 1990; ). Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:β-d-Gal(1,4)-d-GlcNAc α(1,3)-galactosyltransferase cDNA. J Biol Chem 265, 7055–7061.
    [Google Scholar]
  27. Mani, N. & Dupuy, B. ( 2001; ). Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci U S A 98, 5844–5849.[CrossRef]
    [Google Scholar]
  28. McDonald, L. C., Killgore, G. E., Thompson, A., Owens, R. C., Jr, Kazakova, S. V., Sambol, S. P., Johnson, S. & Gerding, D. N. ( 2005; ). An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353, 2433–2441.[CrossRef]
    [Google Scholar]
  29. Pfeifer, G., Schirmer, J., Leemhuis, J., Busch, C., Meyer, D. K., Aktories, K. & Barth, H. ( 2003; ). Cellular uptake of Clostridium difficile toxin B: translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J Biol Chem 278, 44535–44541.[CrossRef]
    [Google Scholar]
  30. Popoff, M. R., Rubin, E. J., Gill, D. M. & Boquet, P. ( 1988; ). Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56, 2299–2306.
    [Google Scholar]
  31. Pothoulakis, C., Gilbert, R. J., Cladaras, C., Castagliuolo, I., Semenza, G., Hitti, Y., Montcrief, J. S., Linevsky, J., Kelly, C. P. & other authors ( 1996; ). Rabbit sucrase-isomaltase contains a functional intestinal receptor for Clostridium difficile toxin A. J Clin Invest 98, 641–649.[CrossRef]
    [Google Scholar]
  32. Qa'Dan, M., Spyres, L. M. & Ballard, J. D. ( 2000; ). pH-induced conformational changes in Clostridium difficile toxin B. Infect Immun 68, 2470–2474.[CrossRef]
    [Google Scholar]
  33. Reineke, J., Tenzer, S., Rupnik, M., Koschinski, A., Hasselmayer, O., Schrattenholz, A., Schild, H. & von Eichel-Streiber, C. ( 2007; ). Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446, 415–419.[CrossRef]
    [Google Scholar]
  34. Reinert, D. J., Jank, T., Aktories, K. & Schulz, G. E. ( 2005; ). Structural basis for the function of Clostridium difficile toxin B. J Mol Biol 351, 973–981.[CrossRef]
    [Google Scholar]
  35. Rifkin, G. D., Fekety, F. R., Silva, J. & Sack, R. B. ( 1977; ). Antibiotic-induced colitis. Implication of a toxin neutralised by Clostridium sordellii antitoxin. Lancet 310, 1103–1106.[CrossRef]
    [Google Scholar]
  36. Rolfe, R. D. & Song, W. ( 1993; ). Purification of a functional receptor for Clostridium difficile toxin A from intestinal brush border membranes of infant hamsters. Clin Infect Dis 16, S219–227.[CrossRef]
    [Google Scholar]
  37. Rupnik, M., Braun, V., Soehn, F., Janc, M., Hofstetter, M., Laufenberg-Feldmann, R. & von Eichel-Streiber, C. ( 1997; ). Characterization of polymorphisms in the toxin A and B genes of Clostridium difficile. FEMS Microbiol Lett 148, 197–202.[CrossRef]
    [Google Scholar]
  38. Rupnik, M., Avesani, V., Janc, M., von Eichel-Streiber, C. & Delmée, M. ( 1998; ). A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J Clin Microbiol 36, 2240–2247.
    [Google Scholar]
  39. Rupnik, M., Pabst, S., Rupnik, M., von Eichel-Streiber, C., Urlaub, H. & Soling, H. D. ( 2005; ). Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. Microbiology 151, 199–208.[CrossRef]
    [Google Scholar]
  40. Sandvig, K., Spilsberg, B., Lauvrak, S. U., Torgersen, M. L., Iversen, T. G. & van Deurs, B. ( 2004; ). Pathways followed by protein toxins into cells. Int J Med Microbiol 293, 483–490.[CrossRef]
    [Google Scholar]
  41. Sehr, P., Joseph, G., Genth, H., Just, I., Pick, E. & Aktories, K. ( 1998; ). Glucosylation and ADP-ribosylation of Rho proteins – effects on nucleotide binding, GTPase activity, and effector-coupling. Biochemistry 37, 5296–5304.[CrossRef]
    [Google Scholar]
  42. Selzer, J., Hofmann, F., Rex, G., Wilm, M., Mann, M., Just, I. & Aktories, K. ( 1996; ). Clostridium novyi α-toxin-catalyzed incorporation of GlcNAc into Rho subfamily proteins. J Biol Chem 271, 25173–25177.[CrossRef]
    [Google Scholar]
  43. Sheahan, K.-L., Cordero, C. L. & Fullner Satchell, K. J. ( 2007; ). Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain. EMBO J 26, 2552–2561.[CrossRef]
    [Google Scholar]
  44. Shears, S. B. ( 2001; ). Assessing the omnipotence of inositol hexakisphosphate. Cell Signal 13, 151–158.[CrossRef]
    [Google Scholar]
  45. Sullivan, N. M., Pellett, S. & Wilkins, T. D. ( 1982; ). Purification and characterization of toxins A and B of Clostridium difficile. Infect Immun 35, 1032–1040.
    [Google Scholar]
  46. Torres, J. F. ( 1991; ). Purification and characterisation of toxin B from a strain of Clostridium difficile that does not produce toxin A. J Med Microbiol 35, 40–44.[CrossRef]
    [Google Scholar]
  47. Tucker, K. D. & Wilkins, T. D. ( 1991; ). Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect Immun 59, 73–78.
    [Google Scholar]
  48. Vetter, I. R., Hofmann, F., Wohlgemuth, S., Herrmann, C. & Just, I. ( 2000; ). Structural consequences of mono-glucosylation of Ha-Ras by Clostridium sordellii lethal toxin. J Mol Biol 301, 1091–1095.[CrossRef]
    [Google Scholar]
  49. von Eichel-Streiber, C. ( 1992; ). A dual model for the architecture of Clostridium difficile toxins A and B. In Bacterial Protein Toxins, pp. 113–122. Edited by B. Witholt. Stuttgart, Jena, New York: Fischer.
  50. von Eichel-Streiber, C., Laufenberg-Feldmann, R., Sartingen, S., Schulze, J. & Sauerborn, M. ( 1992; ). Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 233, 260–268.[CrossRef]
    [Google Scholar]
  51. von Eichel-Streiber, C., Boquet, P., Sauerborn, M. & Thelestam, M. ( 1996; ). Large clostridial cytotoxins – a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol 4, 375–382.[CrossRef]
    [Google Scholar]
  52. Voth, D. E. & Ballard, J. D. ( 2005; ). Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18, 247–263.[CrossRef]
    [Google Scholar]
  53. Warny, M., Pepin, J., Fang, A., Killgore, G., Thompson, A., Brazier, J., Frost, E. & McDonald, L. C. ( 2005; ). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366, 1079–1084.[CrossRef]
    [Google Scholar]
  54. Wren, B. W. ( 1991; ). A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences. Mol Microbiol 5, 797–803.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47742-0
Loading
/content/journal/jmm/10.1099/jmm.0.47742-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error