1887

Abstract

is the major cause of hospital-acquired infectious diarrhoea. Several antimicrobials are known to induce and promote -associated diarrhoea (CDAD). The impact of metronidazole (MTR), vancomycin (VAN), clindamycin (CLI) and linezolid (LZD) on growth, toxin gene transcription and toxin production in was investigated. Four strains were grown with and without sub-MIC concentrations of MTR, VAN, CLI and LZD (0.5× MIC) and growth was measured by colony counts. Toxin production was detected using ELISA (for toxin A) and a cytotoxicity assay (for toxin B) in culture supernatants and also in sonicated cells. Real-time PCR was used to measure transcription of the toxin A and B genes. The aim of this work was to combine analysis of toxin A and B production by ELISA or cell culture assay with transcriptomic analysis. The four strains showed similar growth and different levels of toxin production in the absence of antibiotics. An antibiotic-free control showed toxin production at a late stage when the plateau phase of bacterial growth was reached, whereas antibiotic-exposed strains showed earlier toxin production. All of the antibiotics used except CLI increased the transcription rate of toxin genes. The findings of this study show that sub-MIC concentrations of antibiotics can cause changes in gene transcription of the major virulence factors of . This study describes a new method for transcriptomic analysis of toxin genes in .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47739-0
2008-06-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/776.html?itemId=/content/journal/jmm/10.1099/jmm.0.47739-0&mimeType=html&fmt=ahah

References

  1. Ackermann, G., Adler, D. & Rodloff, A. C. ( 2003; ). In vitro activity of linezolid against Clostridium difficile. J Antimicrob Chemother 51, 743–745.[CrossRef]
    [Google Scholar]
  2. Baines, S. D., Freeman, J. & Wilcox, M. H. ( 2005; ). Effects of piperacillin/tazobactam on Clostridium difficile growth and toxin production in a human gut model. J Antimicrob Chemother 55, 974–982.[CrossRef]
    [Google Scholar]
  3. Barc, M. C., Depitre, C., Corthier, G., Collignon, A., Su, W. J. & Bourlioux, P. ( 1992; ). Effects of antibiotics and other drugs on toxin production in Clostridium difficile in vitro and in vivo. Antimicrob Agents Chemother 36, 1332–1335.[CrossRef]
    [Google Scholar]
  4. Bartlett, J. G., Moon, N., Chang, T. W., Taylor, N. & Onderdonk, A. B. ( 1978; ). Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 75, 778–782.
    [Google Scholar]
  5. Davies, J., Spiegelman, G. B. & Yim, G. ( 2006; ). The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9, 445–453.[CrossRef]
    [Google Scholar]
  6. Dineen, S. S., Villapakkam, A. C., Nordman, J. T. & Sonenshein, A. L. ( 2007; ). Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66, 206–219.[CrossRef]
    [Google Scholar]
  7. Dodson, A. P. & Borriello, S. P. ( 1996; ). Clostridium difficile infection of the gut. J Clin Pathol 49, 529–532.[CrossRef]
    [Google Scholar]
  8. Dove, C. H., Wang, S. Z., Price, S. B., Phelps, C. J., Lyerly, D. M., Wilkins, T. D. & Johnson, J. L. ( 1990; ). Molecular characterization of the Clostridium difficile toxin A gene. Infect Immun 58, 480–488.
    [Google Scholar]
  9. Drummond, L. J., Smith, D. G. & Poxton, I. R. ( 2003; ). Effects of sub-MIC concentrations of antibiotics on growth of and toxin production by Clostridium difficile. J Med Microbiol 52, 1033–1038.[CrossRef]
    [Google Scholar]
  10. Dupuy, B. & Sonenshein, A. L. ( 1998; ). Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 27, 107–120.[CrossRef]
    [Google Scholar]
  11. Dupuy, B., Mani, N., Katayama, S. & Sonenshein, A. L. ( 2005; ). Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor. Mol Microbiol 55, 1196–1206.
    [Google Scholar]
  12. Farrell, R. J. & LaMont, J. T. ( 2000; ). Pathogenesis and clinical manifestations of Clostridium difficile diarrhea and colitis. Curr Top Microbiol Immunol 250, 109–125.
    [Google Scholar]
  13. George, W. L., Sutter, V. L., Citron, D. & Finegold, S. M. ( 1979; ). Selective and differential medium for isolation of Clostridium difficile. J Clin Microbiol 9, 214–219.
    [Google Scholar]
  14. Goh, E. B., Yim, G., Tsui, W., McClure, J., Surette, M. G. & Davies, J. ( 2002; ). Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A 99, 17025–17030.[CrossRef]
    [Google Scholar]
  15. Hall, I. C. & O'Toole, E. ( 1935; ). Intestinal flora in newborn infants with description of a new pathogenic anaerobe. Am J Dis Child 49, 390–402.[CrossRef]
    [Google Scholar]
  16. Hennequin, C., Janoir, C., Barc, M. C., Collignon, A. & Karjalainen, T. ( 2003; ). Identification and characterization of a fibronectin-binding protein from Clostridium difficile. Microbiology 149, 2779–2787.[CrossRef]
    [Google Scholar]
  17. Honda, T., Hernadez, I., Katoh, T. & Miwatani, T. ( 1983; ). Stimulation of enterotoxin production of Clostridium difficile antibiotics. Lancet 321, 655
    [Google Scholar]
  18. Hundsberger, T., Braun, V., Weidmann, M., Leukel, P., Sauerborn, M. & von Eichel-Streiber, C. ( 1997; ). Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem 244, 735–742.[CrossRef]
    [Google Scholar]
  19. Ikeda, D., Karasawa, T., Yamakawa, K., Tanaka, R., Namiki, M. & Nakamura, S. ( 1998; ). Effect of isoleucine on toxin production by Clostridium difficile in a defined medium. Zentralbl Bakteriol 287, 375–386.[CrossRef]
    [Google Scholar]
  20. Jones, E. M., Kirkpatrick, B. L., Feeney, R., Reeves, D. S. & MacGowan, A. P. ( 1997; ). Hospital-acquired Clostridium difficile diarrhoea. Lancet 349, 1176–1177.
    [Google Scholar]
  21. Karlsson, S., Burman, L. G. & Akerlund, T. ( 1999; ). Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 145, 1683–1693.[CrossRef]
    [Google Scholar]
  22. Karlsson, S., Dupuy, B., Mukherjee, K., Norin, E., Burman, L. G. & Akerlund, T. ( 2003; ). Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect Immun 71, 1784–1793.[CrossRef]
    [Google Scholar]
  23. Kelly, C. P., Pothoulakis, C. & LaMont, J. T. ( 1994; ). Clostridium difficile colitis. N Engl J Med 330, 257–262.[CrossRef]
    [Google Scholar]
  24. Larson, H. E., Price, A. B., Honour, P. & Borriello, S. P. ( 1978; ). Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet 311, 1063–1066.[CrossRef]
    [Google Scholar]
  25. Levner, M., Wiener, F. P. & Rubin, B. A. ( 1977; ). Induction of Escherichia coli and Vibrio cholerae enterotoxins by an inhibitor of protein synthesis. Infect Immun 15, 132–137.
    [Google Scholar]
  26. Nakamura, S., Mikawa, M., Tanabe, N., Yamakawa, K. & Nishida, S. ( 1982; ). Effect of clindamycin on cytotoxin production by Clostridium difficile. Microbiol Immunol 26, 985–992.[CrossRef]
    [Google Scholar]
  27. Odenholt, I., Walder, M. & Wullt, M. ( 2007; ). Pharmacodynamic studies of vancomycin, metronidazole and fusidic acid against Clostridium difficile. Chemotherapy 53, 267–274.[CrossRef]
    [Google Scholar]
  28. Ohlsen, K., Ziebuhr, W., Koller, K. P., Hell, W., Wichelhaus, T. A. & Hacker, J. ( 1998; ). Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 42, 2817–2823.
    [Google Scholar]
  29. Onderdonk, A. B., Lowe, B. R. & Bartlett, J. G. ( 1979; ). Effect of environmental stress on Clostridium difficile toxin levels during continuous cultivation. Appl Environ Microbiol 38, 637–641.
    [Google Scholar]
  30. Pelaez, T., Alcala, L., Alonso, R., Rodriguez-Creixems, M., Garcia-Lechuz, J. M. & Bouza, E. ( 2002; ). Reassessment of Clostridium difficile susceptibility to metronidazole and vancomycin. Antimicrob Agents Chemother 46, 1647–1650.[CrossRef]
    [Google Scholar]
  31. Pepin, J., Saheb, N., Coulombe, M. A., Alary, M. E., Corriveau, M. P., Authier, S., Leblanc, M., Rivard, G., Bettez, M. & other authors ( 2005; ). Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 41, 1254–1260.[CrossRef]
    [Google Scholar]
  32. Rothstein, J. D., Patel, S., Regan, M. R., Haenggeli, C., Huang, Y. H., Bergles, D. E., Jin, L., Dykes Hoberg, M., Vidensky, S. & other authors ( 2005; ). β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73–77.[CrossRef]
    [Google Scholar]
  33. Spizek, J. & Rezanka, T. ( 2004; ). Lincomycin, clindamycin and their applications. Appl Microbiol Biotechnol 64, 455–464.[CrossRef]
    [Google Scholar]
  34. Warny, M., Pepin, J., Fang, A., Killgore, G., Thompson, A., Brazier, J., Frost, E. & McDonald, L. C. ( 2005; ). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366, 1079–1084.[CrossRef]
    [Google Scholar]
  35. Yim, G., Wang, H. H. & Davies, J. ( 2006; ). The truth about antibiotics. Int J Med Microbiol 296, 163–170.[CrossRef]
    [Google Scholar]
  36. Yoh, M., Yamamoto, K., Honda, T., Takeda, Y. & Miwatani, T. ( 1983; ). Effects of lincomycin and tetracycline on production and properties of enterotoxins of enterotoxigenic Escherichia coli. Infect Immun 42, 778–782.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47739-0
Loading
/content/journal/jmm/10.1099/jmm.0.47739-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error