1887

Abstract

Cysteine proteinases from , or gingipains, are considered to be key virulence factors of the bacterium in relation to periodontal diseases. Incubation of human oral epithelial cells with lysine-specific gingipain (Kgp) and high-molecular-mass arginine-specific gingipain (HRgpA) resulted in a decrease in the production of interleukin (IL)-8, but not in the production of other pro-inflammatory cytokines. In contrast, arginine-specific gingipain 2 (RgpB) increased IL-8 production. RNA interference assays demonstrated that Kgp- and HRgpA-mediated downregulation and RgpB-mediated upregulation occurred through protease-activated receptor (PAR)-1 and PAR-2 signalling. Although the RgpB-mediated upregulation of IL-8 production occurred through nuclear factor-kappa B (NF-B), the Kgp- and HRgpA-mediated downregulation was not negated in NF-B-silenced cells. Both the haemagglutinin and the enzymic domains are required for Kgp and HRgpA to downregulate the production of IL-8 in human oral epithelial cells, and the two domains are thought to co-exist. These results suggest that gingipains preferentially suppress IL-8, resulting in attenuation of the cellular recognition of bacteria, and as a consequence, sustain chronic inflammation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47679-0
2008-04-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/4/500.html?itemId=/content/journal/jmm/10.1099/jmm.0.47679-0&mimeType=html&fmt=ahah

References

  1. Acheson, D. W. K. & Luccioli, S. ( 2004; ). Microbial–gut interactions in health and disease. Mucosal immune responses. Best Pract Res Clin Gastroenterol 18, 387–404.[CrossRef]
    [Google Scholar]
  2. Chen, Z., Potempa, J., Polanowski, A., Wikstrom, M. & Travis, J. ( 1992; ). Purification and characterization of a 50-kDa cysteine proteinase (gingipain) from Porphyromonas gingivalis. J Biol Chem 267, 18896–18901.
    [Google Scholar]
  3. Coughlin, S. R. ( 2000; ). Thrombin signalling and protease-activated receptors. Nature 407, 258–264.[CrossRef]
    [Google Scholar]
  4. Déry, O., Corvera, C. U., Steinhoff, M. & Bunnett, N. W. ( 1998; ). Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274, C1429–C1452.
    [Google Scholar]
  5. Dixon, D. R., Bainbridge, B. W. & Darveau, R. P. ( 2004; ). Modulation of the innate immune response within the periodontium. Periodontol 2000 35, 53–74.[CrossRef]
    [Google Scholar]
  6. Holt, S. C. & Bramanti, T. E. ( 1991; ). Factors in virulence expression and their role in periodontal disease pathogenesis. Crit Rev Oral Biol Med 2, 177–281.
    [Google Scholar]
  7. Kadowaki, T., Yoneda, M., Okamoto, K., Maeda, K. & Yamamoto, K. ( 1994; ). Purification and characterization of a novel arginine-specific cysteine proteinase (argingipain) involved in the pathogenesis of periodontal disease from the culture supernatant of Porphyromonas gingivalis. J Biol Chem 269, 21371–21378.
    [Google Scholar]
  8. Liu, R. K., Cao, C. F., Meng, H. X. & Gao, Y. ( 2001; ). Polymorphonuclear neutrophils and their mediators in gingival tissues from generalized aggressive periodontitis. J Periodontol 72, 1545–1553.[CrossRef]
    [Google Scholar]
  9. Lourbakos, A., Chinni, C., Thompson, P., Potempa, J., Travis, J., Mackie, E. J. & Pike, R. N. ( 1998; ). Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FEBS Lett 435, 45–48.[CrossRef]
    [Google Scholar]
  10. Lourbakos, A., Potempa, J., Travis, J., D'Andrea, M. R., Andrade-Gordon, P., Santulli, R., Mackie, E. J. & Pike, R. N. ( 2001a; ). Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun 69, 5121–5130.[CrossRef]
    [Google Scholar]
  11. Lourbakos, A., Yuan, Y., Jenkins, A. L., Travis, J., Andrade-Gordon, P., Santulli, R., Potempa, J. & Pike, R. N. ( 2001b; ). Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 97, 3790–3797.[CrossRef]
    [Google Scholar]
  12. Mikolajczyk-Pawlinska, J., Travis, J. & Potempa, J. ( 1998; ). Modulation of interleukin-8 activity by gingipains from Porphyromonas gingivalis: implications for pathogenicity of periodontal disease. FEBS Lett 440, 282–286.[CrossRef]
    [Google Scholar]
  13. Momose, F., Araida, T., Negishi, A., Ichijo, H., Shioda, S. & Sasaki, S. ( 1989; ). Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas. J Oral Pathol Med 18, 391–395.[CrossRef]
    [Google Scholar]
  14. Naito, M., Sakai, E., Shi, Y., Ideguchi, H., Shoji, M., Ohara, N., Naito, M., Yamamoto, K. & Nakayama, K. ( 2006; ). Porphyromonas gingivalis-induced platelet aggregation in plasma depends on Hgp44 adhesin but not Rgp proteinase. Mol Microbiol 59, 152–167.[CrossRef]
    [Google Scholar]
  15. Nakayama, K., Kadowaki, T., Okamoto, K. & Yamamoto, K. ( 1995; ). Construction and characterization of arginine-specific cysteine proteinase (Arg-gingipain)-deficient mutants of Porphyromonas gingivalis. Evidence for significant contribution of Arg-gingipain to virulence. J Biol Chem 270, 23619–23626.[CrossRef]
    [Google Scholar]
  16. Nakayama, K., Ratnayake, D. B., Tsukuba, T., Kadowaki, T., Yamamoto, K. & Fujimura, S. ( 1998; ). Haemoglobin receptor protein is intragenically encoded by the cysteine proteinase-encoding genes and the haemagglutinin-encoding gene of Porphyromonas gingivalis. Mol Microbiol 27, 51–61.[CrossRef]
    [Google Scholar]
  17. O'Brien, P. J., Molino, M., Kahn, M. & Brass, L. F. ( 2001; ). Protease activated receptors: theme and variations. Oncogene 20, 1570–1581.[CrossRef]
    [Google Scholar]
  18. Ogawa, T., Asai, Y., Makimura, Y. & Tamai, R. ( 2007; ). Chemical structure and immunobiological activity of Porphyromonas gingivalis lipid A. Front Biosci 12, 3795–3812.[CrossRef]
    [Google Scholar]
  19. Okamoto, K., Kadowaki, T., Nakayama, K. & Yamamoto, K. ( 1996; ). Cloning and sequencing of the gene encoding a novel lysine-specific cysteine proteinase (Lys-gingipain) in Porphyromonas gingivalis: structural relationship with the arginine-specific cysteine proteinase (Arg-gingipain). J Biochem (Tokyo) 120, 398–406.[CrossRef]
    [Google Scholar]
  20. Pike, R., McGraw, W., Potempa, J. & Travis, J. ( 1994; ). Lysine- and arginine-specific proteinases from Porphyromonas gingivalis. Isolation, characterization, and evidence for the existence of complexes with hemagglutinins. J Biol Chem 269, 406–411.
    [Google Scholar]
  21. Potempa, J., Pike, R. & Travis, J. ( 1995; ). The multiple forms of trypsin-like activity present in various strains of Porphyromonas gingivalis are due to the presence of either Arg-gingipain or Lys-gingipain. Infect Immun 63, 1176–1182.
    [Google Scholar]
  22. Potempa, J., Pike, R. & Travis, J. ( 1997; ). Titration and mapping of the active site of cysteine proteinases from Porphyromonas gingivalis (gingipains) using peptidyl chloromethanes. Biol Chem 378, 223–230.
    [Google Scholar]
  23. Potempa, J., Mikolajczyk-Pawlinska, J., Brassell, D., Nelson, D., Thøgersen, I. B., Enghild, J. J. & Travis, J. ( 1998; ). Comparative properties of two cysteine proteinases (gingipains R), the products of two related but individual genes of Porphyromonas gingivalis. J Biol Chem 273, 21648–21657.[CrossRef]
    [Google Scholar]
  24. Pütsep, K., Carlsson, G., Boman, H. G. & Andersson, M. ( 2002; ). Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360, 1144–1149.[CrossRef]
    [Google Scholar]
  25. Sato, K., Sakai, E., Veith, P. D., Shoji, M., Kikuchi, Y., Yukitake, H., Ohara, N., Naito, M., Okamoto, K. & other authors ( 2005; ). Identification of a new membrane-associated protein that influences transport/maturation of gingipains and adhesins of Porphyromonas gingivalis. J Biol Chem 280, 8668–8677.[CrossRef]
    [Google Scholar]
  26. Shi, Y., Ratnayake, D. B., Okamoto, K., Abe, N., Yamamoto, K. & Nakayama, K. ( 1999; ). Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Construction of mutants with a combination of rgpA, rgpB, kgp, and hagA. J Biol Chem 274, 17955–17960.[CrossRef]
    [Google Scholar]
  27. Shoji, M., Naito, M., Yukitake, H., Sato, K., Sakai, E., Ohara, N. & Nakayama, K. ( 2004; ). The major structural components of two cell surface filaments of Porphyromonas gingivalis are matured through lipoprotein precursors. Mol Microbiol 52, 1513–1525.[CrossRef]
    [Google Scholar]
  28. Sugawara, S., Nemoto, E., Tada, H., Miyake, K., Imamura, T. & Takada, H. ( 2000; ). Proteolysis of human monocyte CD14 by cysteine proteinases (gingipains) from Porphyromonas gingivalis leading to lipopolysaccharide hyporesponsiveness. J Immunol 165, 411–418.[CrossRef]
    [Google Scholar]
  29. Tada, H., Sugawara, S., Nemoto, E., Takahashi, N., Imamura, T., Potempa, J., Travis, J., Shimauchi, H. & Takada, H. ( 2002; ). Proteolysis of CD14 on human gingival fibroblasts by arginine-specific cysteine proteinases from Porphyromonas gingivalis leading to down-regulation of lipopolysaccharide-induced interleukin-8 production. Infect Immun 70, 3304–3307.[CrossRef]
    [Google Scholar]
  30. Tada, H., Sugawara, S., Nemoto, E., Imamura, T., Potempa, J., Travis, J., Shimauchi, H. & Takada, H. ( 2003; ). Proteolysis of ICAM-1 on human oral epithelial cells by gingipains. J Dent Res 82, 796–801.[CrossRef]
    [Google Scholar]
  31. Tancharoen, S., Sarker, K. P., Imamura, T., Biswas, K. K., Matsushita, K., Tatsuyama, S., Travis, J., Potempa, J., Torii, M. & Maruyama, I. ( 2005; ). Neuropeptide release from dental pulp cells by RgpB via proteinase-activated receptor-2 signaling. J Immunol 174, 5796–5804.[CrossRef]
    [Google Scholar]
  32. Uehara, A., Sugawara, S., Tamai, R. & Takada, H. ( 2001; ). Contrasting responses of human gingival and colonic epithelial cells to lipopolysaccharides, lipoteichoic acids and peptidoglycans in the presence of soluble CD14. Med Microbiol Immunol 189, 185–192.[CrossRef]
    [Google Scholar]
  33. Uehara, A., Sugawara, S. & Takada, H. ( 2002a; ). Priming of human oral epithelial cells by interferon-γ to secrete cytokines in response to lipopolysaccharides, lipoteichoic acids and peptidoglycans. J Med Microbiol 51, 626–634.
    [Google Scholar]
  34. Uehara, A., Sugawara, S., Muramoto, K. & Takada, H. ( 2002b; ). Activation of human oral epithelial cells by neutrophil proteinase 3 through protease-activated receptor-2. J Immunol 169, 4594–4603.[CrossRef]
    [Google Scholar]
  35. Uehara, A., Muramoto, K., Takada, H. & Sugawara, S. ( 2003; ). Neutrophil serine proteinases activate human nonepithelial cells to produce inflammatory cytokines through protease-activated receptor 2. J Immunol 170, 5690–5696.[CrossRef]
    [Google Scholar]
  36. Uehara, A., Sugawara, Y., Sasano, T., Takada, H. & Sugawara, S. ( 2004; ). Proinflammatory cytokines induce proteinase 3 as membrane-bound and secretory forms in human oral epithelial cells and antibodies to proteinase 3 activate the cells through protease-activated receptor-2. J Immunol 173, 4179–4189.[CrossRef]
    [Google Scholar]
  37. Uehara, A., Muramoto, K., Imamura, T., Nakayama, K., Potempa, J., Travis, J., Sugawara, S. & Takada, H. ( 2005; ). Arginine-specific gingipains from Porphyromonas gingivalis stimulate production of hepatocyte growth factor (scatter factor) through protease-activated receptors in human gingival fibroblasts in culture. J Immunol 175, 6076–6084.[CrossRef]
    [Google Scholar]
  38. Weiss, S. J. ( 1989; ). Tissue destruction by neutrophils. N Engl J Med 320, 365–376.[CrossRef]
    [Google Scholar]
  39. Wingrove, J. A., DiScipio, R. G., Chen, Z., Potempa, J., Travis, J. & Hugli, T. E. ( 1992; ). Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem 267, 18902–18907.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47679-0
Loading
/content/journal/jmm/10.1099/jmm.0.47679-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error