1887

Abstract

is the most common cause of antibiotic-associated diarrhoea. Antibiotics are presumed to disturb the normal intestinal microbiota, leading to depletion of the barrier effect and colonization by pathogenic bacteria. This first step of infection includes adherence to epithelial cells. We investigated the impact of various environmental conditions on the expression of genes encoding known, or putative, colonization factors: three adhesins, P47 (one of the two S-layer proteins), Cwp66 and Fbp68, and a protease, Cwp84. The conditions studied included hyperosmolarity, iron depletion and exposure to several antibiotics (ampicillin, clindamycin, ofloxacin, moxifloxacin and kanamycin). The analysis was performed on three toxigenic and three non-toxigenic isolates using real-time PCR. To complete this work, the impact of ampicillin and clindamycin on the adherence of to Caco-2/TC7 cells was analysed. Overall, for the six strains of studied, exposure to subinhibitory concentrations (1/2 MIC) of clindamycin and ampicillin led to the increased expression of genes encoding colonization factors. This was correlated with the increased adherence of to cultured cells under the same conditions. The levels of gene regulation observed among the six strains studied were highly variable, being the most upregulated. In contrast, the expression of these genes was weakly, or not significantly, modified in the presence of ofloxacin, moxifloxacin or kanamycin. These results suggest that, in addition to the disruption of the normal intestinal microbiota and its barrier effect, the high propensity of antibiotics such as ampicillin and clindamycin to induce infection could also be explained by their direct role in enhancing colonization by .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47676-0
2008-06-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/732.html?itemId=/content/journal/jmm/10.1099/jmm.0.47676-0&mimeType=html&fmt=ahah

References

  1. Adams, D. A., Riggs, M. M. & Donskey, C. J. ( 2007; ). Effect of fluoroquinolone treatment on growth of and toxin production by epidemic and nonepidemic Clostridium difficile strains in the cecal contents of mice. Antimicrob Agents Chemother 51, 2674–2678.[CrossRef]
    [Google Scholar]
  2. Baines, S. D., Freeman, J. & Wilcox, M. H. ( 2005; ). Effects of piperacillin/tazobactam on Clostridium difficile growth and toxin production in a human gut model. J Antimicrob Chemother 55, 974–982.[CrossRef]
    [Google Scholar]
  3. Barc, M. C., Depitre, C., Corthier, G., Collignon, A., Su, W. J. & Bourlioux, P. ( 1992; ). Effects of antibiotics and other drugs on toxin production in Clostridium difficile in vitro and in vivo. Antimicrob Agents Chemother 36, 1332–1335.[CrossRef]
    [Google Scholar]
  4. Bartlett, J. G. ( 2006; ). Narrative review: the new epidemic of Clostridium difficile-associated enteric disease. Ann Intern Med 145, 758–764.[CrossRef]
    [Google Scholar]
  5. Behra-Miellet, J., Dubreuil, L. & Jumas-Bilak, E. ( 2002; ). Antianaerobic activity of moxifloxacin compared with that of ofloxacin, ciprofloxacin, clindamycin, metronidazole and beta-lactams. Int J Antimicrob Agents 20, 366–374.[CrossRef]
    [Google Scholar]
  6. Bermudez, L. E., Petrofsky, M. & Goodman, J. ( 1997; ). Exposure to low oxygen tension and increased osmolarity enhance the ability of Mycobacterium avium to enter intestinal epithelial (HT-29) cells. Infect Immun 65, 3768–3773.
    [Google Scholar]
  7. Calabi, E., Calabi, F., Phillips, A. D. & Fairweather, N. F. ( 2002; ). Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect Immun 70, 5770–5778.[CrossRef]
    [Google Scholar]
  8. Cerquetti, M., Pantosti, A., Stefanelli, P. & Mastrantonio, P. ( 1992; ). Purification and characterization of an immunodominant 36 kDa antigen present on the cell surface of Clostridium difficile. Microb Pathog 13, 271–279.[CrossRef]
    [Google Scholar]
  9. Cerquetti, M., Molinari, A., Sebastianelli, A., Diociaiuti, M., Petruzzelli, R., Capo, C. & Mastrantonio, P. ( 2000; ). Characterization of surface layer proteins from different Clostridium difficile clinical isolates. Microb Pathog 28, 363–372.[CrossRef]
    [Google Scholar]
  10. Cerquetti, M., Serafino, A., Sebastianelli, A. & Mastrantonio, P. ( 2002; ). Binding of Clostridium difficile to Caco-2 epithelial cell line and to extracellular matrix proteins. FEMS Immunol Med Microbiol 32, 211–218.[CrossRef]
    [Google Scholar]
  11. Clarke, S. R., Wiltshire, M. D. & Foster, S. J. ( 2004; ). IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol Microbiol 51, 1509–1519.[CrossRef]
    [Google Scholar]
  12. Cloud, J. & Kelly, C. P. ( 2007; ). Update on Clostridium difficile associated disease. Curr Opin Gastroenterol 23, 4–9.
    [Google Scholar]
  13. Conte, M. P., Longhi, C., Buonfiglio, V., Polidoro, M., Seganti, L. & Valenti, P. ( 1994; ). The effect of iron on the invasiveness of Escherichia coli carrying the inv gene of Yersinia pseudotuberculosis. J Med Microbiol 40, 236–240.[CrossRef]
    [Google Scholar]
  14. Drudy, D., Calabi, E., Kyne, L., Sougioultzis, S., Kelly, E., Fairweather, N. & Kelly, C. P. ( 2004; ). Human antibody response to surface layer proteins in Clostridium difficile infection. FEMS Immunol Med Microbiol 41, 237–242.[CrossRef]
    [Google Scholar]
  15. Drummond, L. J., Smith, D. G. & Poxton, I. R. ( 2003; ). Effects of sub-MIC concentrations of antibiotics on growth of and toxin production by Clostridium difficile. J Med Microbiol 52, 1033–1038.[CrossRef]
    [Google Scholar]
  16. Eleaume, H. & Jabbouri, S. ( 2004; ). Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J Microbiol Methods 59, 363–370.[CrossRef]
    [Google Scholar]
  17. Freeman, J. & Wilcox, M. H. ( 1999; ). Antibiotics and Clostridium difficile. Microbes Infect 1, 377–384.[CrossRef]
    [Google Scholar]
  18. Freeman, J., O'Neill, F. J. & Wilcox, M. H. ( 2003; ). Effects of cefotaxime and desacetylcefotaxime upon Clostridium difficile proliferation and toxin production in a triple-stage chemostat model of the human gut. J Antimicrob Chemother 52, 96–102.[CrossRef]
    [Google Scholar]
  19. Hennequin, C., Collignon, A. & Karjalainen, T. ( 2001a; ). Analysis of expression of GroEL (Hsp60) of Clostridium difficile in response to stress. Microb Pathog 31, 255–260.[CrossRef]
    [Google Scholar]
  20. Hennequin, C., Porcheray, F., Waligora-Dupriet, A., Collignon, A., Barc, M., Bourlioux, P. & Karjalainen, T. ( 2001b; ). GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 147, 87–96.
    [Google Scholar]
  21. Hennequin, C., Janoir, C., Barc, M. C., Collignon, A. & Karjalainen, T. ( 2003; ). Identification and characterization of a fibronectin-binding protein from Clostridium difficile. Microbiology 149, 2779–2787.[CrossRef]
    [Google Scholar]
  22. Janoir, C., Pechine, S., Grosdidier, C. & Collignon, A. ( 2007; ). Cwp84, a surface-associated protein of Clostridium difficile is a cysteine protease with degrading activity on extracellular matrix proteins. J Bacteriol 189, 7174–7180.[CrossRef]
    [Google Scholar]
  23. Johnson, S. & Gerding, D. N. ( 1998; ). Clostridium difficile-associated diarrhea. Clin Infect Dis 26, 1027–1034.[CrossRef]
    [Google Scholar]
  24. Karjalainen, T., Waligora-Dupriet, A. J., Cerquetti, M., Spigaglia, P., Maggioni, A., Mauri, P. & Mastrantonio, P. ( 2001; ). Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile. Infect Immun 69, 3442–3446.[CrossRef]
    [Google Scholar]
  25. Leclerc, G. J., Tartera, C. & Metcalf, E. S. ( 1998; ). Environmental regulation of Salmonella typhi invasion-defective mutants. Infect Immun 66, 682–691.
    [Google Scholar]
  26. McDonald, L. C., Killgore, G. E., Thompson, A., Owens, R. C., Jr, Kazakova, S. V., Sambol, S. P., Johnson, S. & Gerding, D. N. ( 2005; ). An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353, 2433–2441.[CrossRef]
    [Google Scholar]
  27. Morrissey, J. A., Cockayne, A., Hammacott, J., Bishop, K., Denman-Johnson, A., Hill, P. J. & Williams, P. ( 2002; ). Conservation, surface exposure, and in vivo expression of the Frp family of iron-regulated cell wall proteins in Staphylococcus aureus. Infect Immun 70, 2399–2407.[CrossRef]
    [Google Scholar]
  28. Nakamura, S., Mikawa, M., Tanabe, N., Yamakawa, K. & Nishida, S. ( 1982; ). Effect of clindamycin on cytotoxin production by Clostridium difficile. Microbiol Immunol 26, 985–992.[CrossRef]
    [Google Scholar]
  29. Onderdonk, A. B., Lowe, B. R. & Bartlett, J. G. ( 1979; ). Effect of environmental stress on Clostridium difficile toxin levels during continuous cultivation. Appl Environ Microbiol 38, 637–641.
    [Google Scholar]
  30. Pechine, S., Gleizes, A., Janoir, C., Gorges-Kergot, R., Barc, M. C., Delmee, M. & Collignon, A. ( 2005a; ). Immunological properties of surface proteins of Clostridium difficile. J Med Microbiol 54, 193–196.[CrossRef]
    [Google Scholar]
  31. Pechine, S., Janoir, C. & Collignon, A. ( 2005b; ). Variability of Clostridium difficile surface proteins and specific serum antibody response in patients with Clostridium difficile-associated disease. J Clin Microbiol 43, 5018–5025.[CrossRef]
    [Google Scholar]
  32. Pepin, J., Saheb, N., Coulombe, M. A., Alary, M. E., Corriveau, M. P., Authier, S., Leblanc, M., Rivard, G., Bettez, M. & other authors ( 2005a; ). Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 41, 1254–1260.[CrossRef]
    [Google Scholar]
  33. Pepin, J., Valiquette, L. & Cossette, B. ( 2005b; ). Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 173, 1037–1042.[CrossRef]
    [Google Scholar]
  34. Poilane, I., Karjalainen, T., Barc, M. C., Bourlioux, P. & Collignon, A. ( 1998; ). Protease activity of Clostridium difficile strains. Can J Microbiol 44, 157–161.[CrossRef]
    [Google Scholar]
  35. Pultz, N. J. & Donskey, C. J. ( 2005; ). Effect of antibiotic treatment on growth of and toxin production by Clostridium difficile in the cecal contents of mice. Antimicrob Agents Chemother 49, 3529–3532.[CrossRef]
    [Google Scholar]
  36. Savariau-Lacomme, M. P., Lebarbier, C., Karjalainen, T., Collignon, A. & Janoir, C. ( 2003; ). Transcription and analysis of polymorphism in a cluster of genes encoding surface-associated proteins of Clostridium difficile. J Bacteriol 185, 4461–4470.[CrossRef]
    [Google Scholar]
  37. Sebaihia, M., Wren, B. W., Mullany, P., Fairweather, N. F., Minton, N., Stabler, R., Thomson, N. R., Roberts, A. P., Cerdeno-Tarraga, A. M. & other authors ( 2006; ). The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38, 779–786.[CrossRef]
    [Google Scholar]
  38. Seddon, S. V. & Borriello, S. P. ( 1992; ). Proteolytic activity of Clostridium difficile. J Med Microbiol 36, 307–311.[CrossRef]
    [Google Scholar]
  39. Spencer, R. C. ( 1998; ). The role of antimicrobial agents in the aetiology of Clostridium difficile-associated disease. J Antimicrob Chemother 41 (Suppl. C), 21–27.[CrossRef]
    [Google Scholar]
  40. Starr, J. M. & Impallomeni, M. ( 1997; ). Risk of diarrhoea, Clostridium difficile and cefotaxime in the elderly. Biomed Pharmacother 51, 63–67.[CrossRef]
    [Google Scholar]
  41. Sullivan, A., Edlund, C. & Nord, C. E. ( 2001; ). Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1, 101–114.[CrossRef]
    [Google Scholar]
  42. Tachon, M., Cattoen, C., Blanckaert, K., Poujol, I., Carbonne, A., Barbut, F., Petit, J. C. & Coignard, B. ( 2006; ). First cluster of C. difficile toxinotype III, PCR-ribotype 027 associated disease in France: preliminary report. Euro Surveill 11, E060504.1
    [Google Scholar]
  43. Tasara, T. & Stephan, R. ( 2007; ). Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol Lett 269, 265–272.[CrossRef]
    [Google Scholar]
  44. Tasteyre, A., Barc, M. C., Collignon, A., Boureau, H. & Karjalainen, T. ( 2001a; ). Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect Immun 69, 7937–7940.[CrossRef]
    [Google Scholar]
  45. Tasteyre, A., Karjalainen, T., Avesani, V., Delmee, M., Collignon, A., Bourlioux, P. & Barc, M. C. ( 2001b; ). Molecular characterization of fliD gene encoding flagellar cap and its expression among Clostridium difficile isolates from different serogroups. J Clin Microbiol 39, 1178–1183.[CrossRef]
    [Google Scholar]
  46. Waligora, A. J., Barc, M. C., Bourlioux, P., Collignon, A. & Karjalainen, T. ( 1999; ). Clostridium difficile cell attachment is modified by environmental factors. Appl Environ Microbiol 65, 4234–4238.
    [Google Scholar]
  47. Waligora, A. J., Hennequin, C., Mullany, P., Bourlioux, P., Collignon, A. & Karjalainen, T. ( 2001; ). Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect Immun 69, 2144–2153.[CrossRef]
    [Google Scholar]
  48. Warny, M., Pepin, J., Fang, A., Killgore, G., Thompson, A., Brazier, J., Frost, E. & McDonald, L. C. ( 2005; ). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366, 1079–1084.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47676-0
Loading
/content/journal/jmm/10.1099/jmm.0.47676-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error