1887

Abstract

, the aetiological agent of anthrax, has been taxonomically classified with the group, which comprises , , , and . Although the pathogenesis and ecological manifestations may be different, shares a high degree of DNA sequence similarity with its group member species. As a result, the discrimination of from its close relatives in the group is still quite difficult. Suppression subtractive hybridization (SSH) was performed to search for genomic differences between a Korean isolate CR and the most closely related type strain KCTC 3624. Two-hundred and five CR clones obtained by SSH underwent Southern hybridization, and comparative sequences were analysed using the program from the National Center for Biotechnology Information (NCBI). Subsequently, primer sets based on the glycosyltransferase group 1 family protein gene specific to were designed from the sequences of subtracted clones, and their specificities were evaluated using eight , 33 , 10 , six , one , one and 19 strains from 11 other representative species. PCR primers specific for the glycosyltransferase group 1 family protein gene did not amplify the desired products from any of the strains under examination, except alone. These findings may be useful in the future development of efficient diagnostic tools for the rapid identification of from other members of the group.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47642-0
2008-03-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/3/279.html?itemId=/content/journal/jmm/10.1099/jmm.0.47642-0&mimeType=html&fmt=ahah

References

  1. Agron P. G., Macht M., Radnedge L., Skowronski E. W., Miller W., Andersen G. L. 2002; Use of subtractive hybridization for comprehensive surveys of prokaryotic genome differences. FEMS Microbiol Lett 211:175–182 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Andersen G. L., Simchock J. M., Wilson K. H. 1996; Identification of a region of genetic variability among Bacillus anthracis strains and related species. J Bacteriol 178:377–384
    [Google Scholar]
  4. Anderson I., Sorokin A., Kapatral K., Reznik G., Bhattacharya A., Mikhailova N., Burd H., Joukov V., Kaznadzey D. other authors 2005; Comparative genome analysis of Bacillus cereus group genomes and Bacillus subtilis . FEMS Microbiol Lett 250:175–184 [CrossRef]
    [Google Scholar]
  5. Ash C., Collins M. D. 1992; Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol Lett 73:75–80
    [Google Scholar]
  6. Ash C., Farrow J. A., Dorsch M., Stackebrandt E., Collins M. D. 1991; Comparative analysis of Bacillus anthracis, Bacillus cereus , and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41:343–346 [CrossRef]
    [Google Scholar]
  7. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Struhl K. 1993 Current Protocols in Molecular Biology , Section 2.4 New York: John Wiley and Sons;
    [Google Scholar]
  8. Bell C. A., Uhl J. A., Hadfield T. L., David J. C., Meyer R. F., Smith T. F., Cockerill F. R. III 2002; Detection of Bacillus anthracis DNA by LightCycler PCR. J Clin Microbiol 40:2897–2902 [CrossRef]
    [Google Scholar]
  9. Carlson C. R., Caugant D. A., Kolsto A. B. 1994; Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725
    [Google Scholar]
  10. Cherif A., Borin S., Rizzi A., Ouzari H., Boudabous A., Daffonchio D. 2003; Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S–23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. Appl Environ Microbiol 69:33–40 [CrossRef]
    [Google Scholar]
  11. Choudhury B., Leoff C., Saile E., Wilkins P., Quinn C. P., Kannenberg E. L., Carlson R. W. 2006; The structure of the major cell wall polysaccharide of Bacillus anthracis is species-specific. J Biol Chem 281:27932–27941 [CrossRef]
    [Google Scholar]
  12. Daffonchio D., Borin S., Consolandi A., Mora D., Manachini P. L., Sorlini C. 1998; 16S–23S rRNA internal transcribed spacers as molecular markers for the species of the 16S rRNA group I of the genus Bacillu s. FEMS Microbiol Lett 163:229–236
    [Google Scholar]
  13. Daffonchio D., Borin S., Frova G., Gallo R., Mori E., Fani R., Sorlini C. 1999; A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis . Appl Environ Microbiol 65:1298–1303
    [Google Scholar]
  14. Diatchenko L., Lau Y. F., Campbell A. P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gurskaya N. other authors 1996; Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030 [CrossRef]
    [Google Scholar]
  15. Dwyer K. G., Lamonica J. M., Schumacher J. A., Williams L. E., Bishara J., Lewandowski A., Redkar R., Patra G., DelVecchio V. G. 2004; Identification of Bacillus anthracis specific chromosomal sequences by suppressive subtractive hybridization. BMC Genomics 5:15 [CrossRef]
    [Google Scholar]
  16. Ellerbrok H., Nattermann H., Ozel M., Beutin L., Appel B., Pauli G. 2002; Rapid and sensitive identification of pathogenic and apathogenic Bacillus anthracis by real-time PCR. FEMS Microbiol Lett 214:51–59 [CrossRef]
    [Google Scholar]
  17. Galbraith E. A., Antonopoulos D. A., White B. A. 2004; Suppressive subtractive hybridization as a tool for identifying genetic diversity in an environmental metagenome: the rumen as a model. Environ Microbiol 6:928–937 [CrossRef]
    [Google Scholar]
  18. Gertz E. M., Yu Y.-K., Agarwala R., SchAffer A. C., Altschul S. F. 2006; Composition-based statistics and translated nucleotide searches: improving the tblastn module of blast. BMC Biol 4:41 [CrossRef]
    [Google Scholar]
  19. Han C. S., Xie G., Challacombe J. F., Altherr M. R., Bhotika S. S., Brown N., Bruce B., Campbell C. S., Campbell M. L. other authors 2006; Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis . J Bacteriol 188:3382–3390 [CrossRef]
    [Google Scholar]
  20. Harrell L. J., Andersen G. L., Wilson K. H. 1995; Genetic variability of Bacillus anthracis and related species. J Clin Microbiol 33:1847–1850
    [Google Scholar]
  21. Helgason E., Økstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., KolstA A. B. 2000; Bacillus anthracis, Bacillus cereus , and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630 [CrossRef]
    [Google Scholar]
  22. Helgason E., Tourasse N. J., Meisal R., Caugant D. A., Kolstø A. B. 2004; Multilocus sequence typing for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70:191–201 [CrossRef]
    [Google Scholar]
  23. Hoffmaster A. R., Ravel J., Rasko D. R., Chapman G. D., Chute M. D., Marston C. K., De K. B., Sacchi C. T., Fitzgerald C. other authors 2004; Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci U S A 101:8449–8454 [CrossRef]
    [Google Scholar]
  24. Jenkin G. A., Stinear T. P., Johnson D. R., Davies J. K. 2003; Subtractive hybridization reveals a type I polyketide synthase locus specific to Mycobacterium ulcerans . J Bacteriol 185:6870–6882 [CrossRef]
    [Google Scholar]
  25. Jones H., Ostrowski M., Scanlan D. J. 2006; A suppression subtractive hybridization approach reveals niche-specific genes that may be involved in predator avoidance in marine Synechococcus isolates. Appl Environ Microbiol 72:2730–2737 [CrossRef]
    [Google Scholar]
  26. Keim P., Smith K. L. 2002; Bacillus anthracis evolution and epidemiology. Curr Top Microbiol Immunol 271:21–32
    [Google Scholar]
  27. Keim P., Kalif A., Schupp J., Hill K., Travis S. E., Richmond K., Adair D. M., Hugh-Jones M., Kuske C. R. other authors 1997; Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 179:818–824
    [Google Scholar]
  28. Kim W., Hong Y. P., Yoo J. H., Lee W. B., Choi C. S., Chung S. I. 2002; Genetic relationships of Bacillus anthracis and closely related species based on variable-number tandem repeat analysis and BOX-PCR genomic fingerprinting. FEMS Microbiol Lett 207:21–27 [CrossRef]
    [Google Scholar]
  29. Lechner S., Mayr R., Francis K. P., Pruss B. M., Kaplan T., Gunkel E. W., Stewart G. S. A. B., Scherer S. 1998; Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48:1373–1382 [CrossRef]
    [Google Scholar]
  30. Logan N. A., Carman J. A., Melling J., Berkeley R. C. 1985; Identification of Bacillus anthracis by API tests. J Med Microbiol 20:75–85 [CrossRef]
    [Google Scholar]
  31. Marenda M. S., Vilei E. M., Poumarat F., Frey J., Berthelot X. 2004; Validation of the suppressive subtractive hybridization method in Mycobacterium agalactiae species by the comparison of a field strain with the type strain PG2. Vet Res 35:199–212 [CrossRef]
    [Google Scholar]
  32. Marenda M. S., Sagné E., Poumarat F., Citti C. 2005; Suppression subtractive hybridization as a basis to assess Mycoplasma agalactiae and Mycoplasma bovis genome diversity and species-specific sequences. Microbiology 151:475–489 [CrossRef]
    [Google Scholar]
  33. Mohammed M. J., Marston C. K., Popovic T., Weyant R. S., Tenover F. C. 2002; Antimicrobial susceptibility testing of Bacillus anthracis : comparison of results obtained using the National Committee for Clinical Laboratory Standards broth microdilution references and Etest agar gradient diffusion methods. J Clin Microbiol 40:1902–1907 [CrossRef]
    [Google Scholar]
  34. Nakamura L. K. 1998; Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol 48:1031–1035 [CrossRef]
    [Google Scholar]
  35. Odendaal M. W., Pieterson P. M., de Vros V., Botha A. D. 1991; The biochemical, morphological and virulence profiles of Bacillus anthracis isolated in the Kruger National Park. Onderstepoort J Vet Res 58:21–26
    [Google Scholar]
  36. Oleastro M., Monteiro L., Lehours P., Mégraud F., Ménard A. 2006; Identification of markers for Helicobacter pylori strains isolated from children with peptic ulcer disease by suppressive subtractive hybridization. Infect Immun 74:4064–4074 [CrossRef]
    [Google Scholar]
  37. Priest F. G., Barker M., Baillie L. W., Holmes E. C., Maiden M. C. 2004; Population structure and evolution of the Bacillus cereus group. J Bacteriol 186:7959–7970 [CrossRef]
    [Google Scholar]
  38. Radnedge L., Agron P. G., Hill K. K., Jackson P. J., Ticknor L. O., Keim P., Andersen G. L. 2003; Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis . Appl Environ Microbiol 69:2755–2764 [CrossRef]
    [Google Scholar]
  39. Read T. D., Peterson S. N., Tourasse N., Baillie L. W., Paulsen I. T., Nelson K. E., Tettelin H., Fouts D. E., Eisen J. A. other authors 2003; The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86 [CrossRef]
    [Google Scholar]
  40. Rozen S., Skaletsky H. J. 2000; Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols : Methods in Molecular Biology pp 365–386 Edited by Krawetz S., Misener S. Totowa, NJ: Humana Press;
    [Google Scholar]
  41. Sastry K. S., Tuteja U., Santhosh P. K., Lalitha M. K., Batra H. V. 2003; Identification of Bacillus anthracis by a simple protective antigen-specific mAb dot-ELISA. J Med Microbiol 52:47–49 [CrossRef]
    [Google Scholar]
  42. Schuch R., Nelson D., Fischetti V. A. 2002; A bacteriolytic agent that detects and kills Bacillus anthracis . Nature 418:884–889 [CrossRef]
    [Google Scholar]
  43. Volokhov D., Pomerantsev A., Kivovich V., Rasooly A., Chizhikov V. 2004; Identification of Bacillus anthracis by multiprobe microarray hybridization. Diagn Microbiol Infect Dis 49:163–171 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47642-0
Loading
/content/journal/jmm/10.1099/jmm.0.47642-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error