1887

Abstract

Many virulence phenotypes of are encoded by genes located on pathogenicity islands. Based on genome analysis, it is predicted that pathogenicity island (SPI)-8 is restricted to serovars Typhi and Paratyphi A, and SPI-10 to serovars Typhi, Paratyphi, Enteritidis, Dublin and Gallinarum. This study was conducted to investigate the distribution of SPI-8 and SPI-10 among isolates from sprouts, fish, water and blood. A total of 110 isolates and 6 serovars from the Microbial Type Culture Collection, Chandigarh, India, were screened. All isolates belonging to serovars Washington, Enteritidis and Paratyphi A had both SPI-8 and SPI-10. All serovar Typhi isolates from water and blood had both SPI-8 and SPI-10, whereas isolates from fish contained only SPI-8. SPI-8 and SPI-10 were also detected in only 3 out of 42 isolates belonging to serovar Typhimurium. Both SPI-8 and SPI-10 were absent in serovars Worthington, Dublin, Paratyphi B and Paratyphi C. These results contradict the predictions from genome sequences available in GenBank and indicate that SPI-8 and SPI-10 are widely distributed among serovars and that virulence factors other than those on SPI-8 and SPI-10 may be responsible for host specificity. This is the first report on the distribution of SPIs in isolates from India.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47630-0
2008-04-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/4/424.html?itemId=/content/journal/jmm/10.1099/jmm.0.47630-0&mimeType=html&fmt=ahah

References

  1. Agron, P. G., Walker, R. L., Kinde, H., Sawyer, S. J., Hayes, D. C., Wollard, J. & Andersen, G. L. ( 2001; ). Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar Enteritidis. Appl Environ Microbiol 67, 4984–4991.[CrossRef]
    [Google Scholar]
  2. Al-Khaldi, S. F. & Mossoba, M. M. ( 2004; ). Gene and bacterial identification using high throughput technologies: genomics, proteomics, and phonemics. Nutrition 20, 32–38.[CrossRef]
    [Google Scholar]
  3. Baird-Parker, A. C. ( 1990; ). Foodborne salmonellosis. Lancet 336, 1231–1235.[CrossRef]
    [Google Scholar]
  4. Bandekar, J. R., Kamat, A. S., Karani, M., Dhokane, V., Shashidhar, R., Kakatkar, A., Ghadge, N., Bhat, A., Venugopal, V. & Warrier, S. B. ( 2004; ). Bacteriological quality of farmed freshwater fish and shellfish meant for export. Fishery Technol 41, 57–62.
    [Google Scholar]
  5. Baumler, A. J., Tsolis, R. M., Ficht, T. A. & Adams, L. G. ( 1998; ). Evolution of host adaptation in Salmonella enterica. Infect Immun 66, 4579–4587.
    [Google Scholar]
  6. Bhatta, D. R., Bangtrakulnonth, A., Tishyadhigama, P., Saroj, S. D., Bandekar, J. R., Hendriksen, R. S. & Kapadnis, B. P. ( 2007; ). Serotyping, PCR, phage-typing and antibiotic sensitivity testing of Salmonella serovars isolated from urban drinking water supply systems of Nepal. Lett Appl Microbiol 44, 588–594.[CrossRef]
    [Google Scholar]
  7. Chan, K., Baker, S., Kim, C. C., Detweiler, C. S., Dougan, G. & Falkow, S. ( 2003; ). Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar Typhimurium DNA microarray. J Bacteriol 185, 553–563.[CrossRef]
    [Google Scholar]
  8. Chiu, C. H., Tang, P., Chu, C., Hu, S., Bao, Q., Yu, J., Chou, Y., Wang, H. & Lee, Y. ( 2005; ). The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res 33, 1690–1698.[CrossRef]
    [Google Scholar]
  9. Dhokane, V. S., Hajare, S., Shashidhar, R., Sharma, A. & Bandekar, J. R. ( 2006; ). Radiation processing to ensure safety of minimally processed carrot (Daucus carota) and cucumber (Cucumis sativus): optimization of dose for the elimination of Salmonella Typhimurium and Listeria monocytogenes. J Food Prot 69, 444–448.
    [Google Scholar]
  10. Edwards, R. A., Olsen, G. J. & Maloy, S. R. ( 2002; ). Comparative genomics of closely related salmonellae. Trends Microbiol 10, 94–99.[CrossRef]
    [Google Scholar]
  11. Groisman, E. A. & Ochman, H. ( 1996; ). Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87, 791–794.[CrossRef]
    [Google Scholar]
  12. Hensel, M. ( 2004; ). Evolution of pathogenicity islands of Salmonella enterica. Int J Med Microbiol 294, 95–102.[CrossRef]
    [Google Scholar]
  13. Hirose, K., Itoh, K. I., Nakajima, H., Kurazono, T., Yamaguchi, M., Moriya, K., Ezaki, T., Kawamura, Y., Tamura, K. & Watanabe, H. ( 2002; ). Selective amplification of tyv (rfbE), prt (rfbs), viaB, and fliC genes by multiplex PCR for identification of Salmonella enterica serovar Typhi and Paratyphi A. J Clin Microbiol 40, 633–636.[CrossRef]
    [Google Scholar]
  14. Lynch, M., Painter, J., Woodruff, R. & Braden, C., Centers for Disease Control and Prevention ( 2006; ). Surveillance for foodborne-disease outbreaks – United States, 1998–2002. MMWR Surveill Summ 55, 1–42.
    [Google Scholar]
  15. Oelschlaeger, T. A. & Hacker, J. ( 2004; ). Impact of pathogenicity islands in bacterial diagnostics. APMIS 112, 930–936.[CrossRef]
    [Google Scholar]
  16. Plym-Forshell, L. & Wierup, M. ( 2006; ). Salmonella contamination: a significant challenge to the global marketing of animal food products. Rev Sci Tech 25, 541–554.
    [Google Scholar]
  17. Rabsch, W., Andrews, H. L., Kingsley, R. A., Prager, R., Tschape, H., Adams, L. G. & Baumler, A. J. ( 2002; ). Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun 70, 2249–2255.[CrossRef]
    [Google Scholar]
  18. Saroj, S. D., Shashidhar, R., Dhokane, V., Hajare, S., Sharma, A. & Bandekar, J. R. ( 2006; ). Microbiological evaluation of sprouts marketed in Mumbai, India, and its suburbs. J Food Prot 69, 2515–2518.
    [Google Scholar]
  19. Saroj, S. D., Shashidhar, R. & Bandekar, J. R. ( 2008; ). Genotypic characterization of Salmonella enterica serovar Typhimurium isolated from sprouts and fish. Food Sci Tech Int in press
    [Google Scholar]
  20. Schmidt, H. & Hensel, M. ( 2004; ). Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17, 14–56.[CrossRef]
    [Google Scholar]
  21. Townsend, S. M., Kramer, N. E., Edwards, R., Baker, S., Hamlin, N., Simmonds, M., Stevens, K., Malony, S., Parkhill, J. & other authors ( 2001; ). Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69, 2894–2901.[CrossRef]
    [Google Scholar]
  22. Vernikos, G. S. & Parkhill, J. ( 2006; ). Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22, 2196–2203.[CrossRef]
    [Google Scholar]
  23. Wilson, J. W., Schurr, M. J., LeBlanc, C. L., Ramamurthy, R., Buchanan, K. L. & Nickerson, C. A. ( 2002; ). Mechanisms of bacterial pathogenicity. Postgrad Med J 78, 216–224.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47630-0
Loading
/content/journal/jmm/10.1099/jmm.0.47630-0
Loading

Data & Media loading...

Supplements

Primers used in the study. [PDF](45 KB)

PDF

DNA dot blots for SPI-8 and SPI-10. [PDF](76 KB)

PDF

Molecular typing of serovars. [PDF](242 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error