1887

Abstract

The ability of to tolerate bile is likely to be important for its colonization and survival in the gastrointestinal tract of humans. As bile can be acidified after reflux into the low pH of the human stomach, the inhibitory effect of fresh human bile with normal appearance on before and after acidification was tested first. The results showed that acidification of bile attenuated its inhibitory activity towards . Next, the protein profiles of under human bile and acidified bile stress were obtained by two-dimensional electrophoresis. Protein spots with differential expression were identified using tandem matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results showed that the changes in proteomic profiles under bile and acidified bile stress were similar when compared with that of normal . Expression of 28 proteins was found to be modulated, with the majority being induced during bile or acidified bile exposure. These proteins included molecular chaperones, proteins involved in iron storage, chemotaxis protein, enzymes related to energy metabolism and flagellar protein. These results indicate that responds to bile and acidified bile stress through multiple mechanisms involving many signalling pathways.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47616-0
2008-02-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/2/151.html?itemId=/content/journal/jmm/10.1099/jmm.0.47616-0&mimeType=html&fmt=ahah

References

  1. Ang S., Lee C. Z., Peck K., Sindici M., Matrubutham U., Gleeson M. A., Wang J. T. 2001; Acid-induced gene expression in Helicobacter pylori : study in genomic scale by microarray. Infect Immun 69:1679–1686 [CrossRef]
    [Google Scholar]
  2. Begley M., Gahan C. G., Hill C. 2005; The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651 [CrossRef]
    [Google Scholar]
  3. Bennett H. J., Roberts I. S. 2005; Identification of a new sialic acid-binding protein in Helicobacter pylori . FEMS Immunol Med Microbiol 44:163–169 [CrossRef]
    [Google Scholar]
  4. Bereswill S., Greiner S., van Vliet A. H., Waidner B., Fassbinder F., Schiltz E., Kusters J. G., Kist M. 2000; Regulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori . J Bacteriol 182:5948–5953 [CrossRef]
    [Google Scholar]
  5. Bernstein C., Bernstein H., Payne C. M., Beard S. E., Schneider J. 1999; Bile salt activation of stress response promoters in Escherichia coli . Curr Microbiol 39:68–72 [CrossRef]
    [Google Scholar]
  6. Caldas T., Laalami S., Richarme G. 2000; Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275:855–860 [CrossRef]
    [Google Scholar]
  7. Cellini L., Dainelli B., Angelucci D., Grossi L., Di Bartolomeo S., Di Campli E., Marzio L. 1999; Evidence for an oral–faecal transmission of Helicobacter pylori infection in an experimental murine model. APMIS 107:477–484 [CrossRef]
    [Google Scholar]
  8. Cooksley C., Jenks P. J., Green A., Cockayne A., Logan R. P., Hardie K. R. 2003; NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. J Med Microbiol 52:461–469 [CrossRef]
    [Google Scholar]
  9. Dhaenens L., Szczebara F., Husson M. O. 1997; Identification, characterization, and immunogenicity of the lactoferrin-binding protein from Helicobacter pylori . Infect Immun 65:514–518
    [Google Scholar]
  10. Fallone C. A., Tran S., Semret M., Discepola F., Behr M., Barkun A. N. 2003; Helicobacter DNA in bile: correlation with hepato-biliary diseases. Aliment Pharmacol Ther 17:453–458 [CrossRef]
    [Google Scholar]
  11. Figge R. M., Divakaruni A. V., Gober J. W. 2004; MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus . Mol Microbiol 51:1321–1332 [CrossRef]
    [Google Scholar]
  12. Fox E. M., Raftery M., Goodchild A., Mendz G. L. 2007; Campylobacter jejuni response to ox-bile stress. FEMS Immunol Med Microbiol 49:165–172 [CrossRef]
    [Google Scholar]
  13. Gaillot O. 2004; ATP-dependant proteolysis and bacterial pathogenesis. Ann Biol Clin (Paris 62:7–14
    [Google Scholar]
  14. Graham D. Y., Osato M. S. 2000; H. pylori in the pathogenesis of duodenal ulcer: interaction between duodenal acid load, bile, and H. pylori . Am J Gastroenterol 95:87–91 [CrossRef]
    [Google Scholar]
  15. Hynes S. O., McGuire J., Falt T., Wadström T. 2003; The rapid detection of low molecular mass proteins differentially expressed under biological stress for four Helicobacter spp. using ProteinChip technology. Proteomics 3:273–278 [CrossRef]
    [Google Scholar]
  16. Itoh M., Wada K., Tan S., Kitano Y., Kai J., Makino I. 1999; Antibacterial action of bile acids against Helicobacter pylori and changes in its ultrastructural morphology: effect of unconjugated dihydroxy bile acid. J Gastroenterol 34:571–576 [CrossRef]
    [Google Scholar]
  17. Jones L. J., Carballido-Lopez R., Errington J. 2001; Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis . Cell 104:913–922 [CrossRef]
    [Google Scholar]
  18. Kivi M., Tindberg Y. 2006; Helicobacter pylori occurrence and transmission: a family affair?. Scand J Infect Dis 38:407–417 [CrossRef]
    [Google Scholar]
  19. Kruse T., Moller-Jensen J., Lobner-Olesen A., Gerdes K. 2003; Dysfunctional MreB inhibits chromosome segregation in Escherichia coli . EMBO J 22:5283–5292 [CrossRef]
    [Google Scholar]
  20. Leakey A., La Brooy J., Hirst R. 2000; The ability of Helicobacter pylori to activate neutrophils is determined by factors other than H. pylori neutrophil-activating protein. J Infect Dis 182:1749–1755 [CrossRef]
    [Google Scholar]
  21. Lee H. W., Choe Y. H., Kim D. K., Jung S. Y., Lee N. G. 2004; Proteomic analysis of a ferric uptake regulator mutant of Helicobacter pylori : regulation of Helicobacter pylori gene expression by ferric uptake regulator and iron. Proteomics 4:2014–2027 [CrossRef]
    [Google Scholar]
  22. Marshall B. J., Royce H., Annear D. I. 1984; Original isolation of Campylobacter pyloridis from human gastric mucosa. Microbios Lett 25:83–88
    [Google Scholar]
  23. Merrell D. S., Goodrich M. L., Otto G., Tompkins L. S., Falkow S. 2003; pH-regulated gene expression of the gastric pathogen Helicobacter pylori . Infect Immun 71:3529–3539 [CrossRef]
    [Google Scholar]
  24. Neri V., Margiotta M., de Francesco V., Ambrosi A., Valle N. D., Fersini A., Tartaglia N., Minenna M. F., Ricciardelli C. other authors 2005; DNA sequences and proteic antigens of H. pylori in cholecystic bile and tissue of patients with gallstones. Aliment Pharmacol Ther 22:715–720 [CrossRef]
    [Google Scholar]
  25. Nilsson H. O., Taneera J., Castedal M., Glatz E., Olsson R., Wadström T. 2000; Identification of Helicobacter pylori and other Helicobacter species by PCR, hybridization, and partial DNA sequencing in human liver samples from patients with primary sclerosing cholangitis or primary biliary cirrhosis. J Clin Microbiol 38:1072–1076
    [Google Scholar]
  26. Prouty A. M., Brodsky I. E., Falkow S., Gunn J. S. 2004; Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium . Microbiology 150:775–783 [CrossRef]
    [Google Scholar]
  27. Sánchez B., Champomier-Vergès M. C., Anglade P., Baraige F., de Los Reyes-Gavilán C. G., Margolles A., Zagorec M. 2005; Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol 187:5799–5808 [CrossRef]
    [Google Scholar]
  28. Stone M. A. 1999; Transmission of Helicobacter pylori . Postgrad Med J 75:198–200 [CrossRef]
    [Google Scholar]
  29. Toker A. S., Macnab R. M. 1997; Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. J Mol Biol 273:623–634 [CrossRef]
    [Google Scholar]
  30. Toledo H., Valenzuela M., Rivas A., Jerez C. A. 2002; Acid stress response in Helicobacter pylori . FEMS Microbiol Lett 213:67–72 [CrossRef]
    [Google Scholar]
  31. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S. other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori . Nature 388:539–547 [CrossRef]
    [Google Scholar]
  32. Tomoyasu T., Ohkishi T., Ukyo Y., Tokumitsu A., Takaya A., Suzuki M., Sekiya K., Matsui H., Kutsukake K., Yamamoto T. 2002; The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar Typhimurium. J Bacteriol 184:645–653 [CrossRef]
    [Google Scholar]
  33. Wen Y., Marcus E. A., Matrubutham U., Gleeson M. A., Scott D. R., Sachs G. 2003; Acid-adaptive genes of Helicobacter pylori . Infect Immun 71:5921–5939 [CrossRef]
    [Google Scholar]
  34. Worku M. L., Karim Q. N., Spencer J., Sidebotham R. L. 2004; Chemotactic response of Helicobacter pylori to human plasma and bile. J Med Microbiol 53:807–811 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47616-0
Loading
/content/journal/jmm/10.1099/jmm.0.47616-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error