1887

Abstract

The PE and PPE proteins of form a source of antigenic variation among different strains of this bacterium. Two of the PE_PGRS protein-encoding genes, and , are expressed in pathogenic mycobacteria and are implicated, respectively, in the persistence of the organism in macrophages and in virulence. Peptides derived from these proteins have been predicted to bind major histocompatibility complex (MHC) class I with high affinity on the basis of immunoinformatics analysis, suggesting a possible role for these proteins in antimycobacterial immunity. In the present work, using DNA constructs containing the and genes of , the immunogenicity of these proteins was demonstrated in BALB/c mice. Immunization with either DNA construct induced a significant number of CD8-type T cells and a strong Th1-type response, with high gamma interferon (IFN-) and low interleukin-4 responses. Three nonameric peptides of Rv3812 and two of Rv3018c elicited a strong T-cell response in an MHC-restricted manner. An epitope-specific response was demonstrated by the lysis of peptide-pulsed antigen-presenting cells, release of perforin and IFN- production. Experimentally, these peptides bound with high affinity to MHC H-2K and showed low dissociation rates of peptide–MHC complexes. This study suggests that the identified T-cell epitopes may contribute to immunity against tuberculosis if included in a vaccine.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47565-0
2008-09-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/9/1079.html?itemId=/content/journal/jmm/10.1099/jmm.0.47565-0&mimeType=html&fmt=ahah

References

  1. Banu, S., Honore, N., Saint-Joanis, B., Philpott, D., Prevost, M. C. & Cole, S. T. ( 2002; ). Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol 4457, 9–19.
    [Google Scholar]
  2. Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A. & Duncan, K. ( 2002; ). Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43, 717–731.[CrossRef]
    [Google Scholar]
  3. Bloom, B. R. & Fine, P. E. M. ( 1994; ). The BCG experience: implications for future vaccines against tuberculosis. In Tuberculosis, Pathogenesis, Protection and Control, pp. 531–557. Washington, DC: American Society for Microbiology.
  4. Brennan, M. J., Delogu, G., Chen, Y., Bardarov, S., Kriakov, J., Alavi, M. & Jacobs, W. R., Jr ( 2001; ). Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun 69, 7326–7333.[CrossRef]
    [Google Scholar]
  5. Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. ( 1999; ). Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34, 257–267.[CrossRef]
    [Google Scholar]
  6. Chaitra, M. G., Hariharaputran, S., Chandra, N. R., Shaila, M. S. & Nayak, R. ( 2005; ). Defining putative T cell epitopes from PE and PPE families of proteins of Mycobacterium tuberculosis with vaccine potential. Vaccine 23, 1265–1272.[CrossRef]
    [Google Scholar]
  7. Chaitra, M. G., Shaila, M. S. & Nayak, R. ( 2007a; ). Evaluation of T-cell responses to peptides with MHC class I-binding motifs derived from PE_PGRS 33 protein of Mycobacterium tuberculosis. J Med Microbiol 56, 466–474.[CrossRef]
    [Google Scholar]
  8. Chaitra, M. G., Nayak, R. & Shaila, M. S. ( 2007b; ). Modulation of immune responses in mice to recombinant antigens from PE and PPE families of proteins of Mycobacterium tuberculosis by the Ribi adjuvant. Vaccine 25, 7168–7176.[CrossRef]
    [Google Scholar]
  9. Chan, J., Tanaka, K., Carroll, D., Flynn, J. & Bloom, B. R. ( 1995; ). Effects of nitric oxide synthase inhibitors on mouse infection with Mycobacterium tuberculosis. Infect Immun 63, 736–740.
    [Google Scholar]
  10. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S. & other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  11. Cooper, A. M. & Flynn, J. L. ( 1995; ). The protective immune response to Mycobacterium tuberculosis. Curr Opin Immunol 7, 512–516.[CrossRef]
    [Google Scholar]
  12. Daftarian, P., Mansour, M., Benoit, A. C., Pohajdak, B., Hoskin, D. W., Brown, R. G. & Kast, W. M. ( 2006; ). Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL–T helper fusion peptide in a water-in-oil emulsion. Vaccine 24, 5235–5244.[CrossRef]
    [Google Scholar]
  13. De Libero, G., Flesch, I. & Kaufmann, S. H. ( 1988; ). Mycobacteria-reactive Lyt-21 T cell lines. Eur J Immunol 18, 59–66.[CrossRef]
    [Google Scholar]
  14. Delogu, G., Pusceddu, C., Bua, A., Fadda, G., Brennan, M. J. & Zanetti, S. ( 2004; ). Rv1818c-encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure. Mol Microbiol 52, 725–733.[CrossRef]
    [Google Scholar]
  15. Dillon, D. C., Alderson, M. R., Day, C. H., Lewinsohn, D. M., Coler, R., Bement, T., Campos-Neto, A., Skeiky, Y. A., Orme, I. M. & other authors ( 1999; ). Molecular characterization and human T-cell responses to a member of a novel Mycobacterium tuberculosis mtb39 gene family. Infect Immun 67, 2941–2950.
    [Google Scholar]
  16. Fisher, M. A., Plikaytis, B. B. & Shinnick, T. M. ( 2002; ). Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184, 4025–4032.[CrossRef]
    [Google Scholar]
  17. Flynn, J. L., Goldstein, M. M., Triebold, K. J., Koller, B. & Bloom, B. R. ( 1992; ). Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A 89, 12013–12017.[CrossRef]
    [Google Scholar]
  18. Gurunathan, S., Wu, C. Y., Freidag, B. L. & Seder, R. A. ( 2000; ). DNA vaccines: immunology, application and optimization. Annu Rev Immunol 18, 927–974.[CrossRef]
    [Google Scholar]
  19. Kampmann, B., O'Gaora, P., Snewin, V. A., Gares, M.-P., Young, D. B. & Levin, M. ( 2000; ). Evaluation of human anti-mycobacterial immunity using recombinant reporter mycobacteria. J Infect Dis 182, 895–901.[CrossRef]
    [Google Scholar]
  20. Kaufmann, S. H. ( 1995; ). Immunity to intracellular microbial pathogens. Immunol Today 16, 338–342.[CrossRef]
    [Google Scholar]
  21. Kaufmann, S. H. E. ( 2000; ). Is the development of a new tuberculosis vaccine possible? Nat Med 6, 955–960.[CrossRef]
    [Google Scholar]
  22. Kawakami, K., Teruya, K., Tohyama, M., Kudeken, N. & Saito, A. ( 1994; ). A therapeutic trial of experimental tuberculosis with γ-interferon in an immuno-compromised mouse model. Kekkaku 69, 607–613.
    [Google Scholar]
  23. Ljunggren, H. G., Stam, N. J., Ohlen, C., Neefjes, J. J., Hoglund, P., Heemels, M. T., Bastin, J., Schumacher, T. N., Townsend, A. & Karre, K. ( 1990; ). Empty MHC class I molecules come out in the cold. Nature 346, 476–480.[CrossRef]
    [Google Scholar]
  24. O'Donnell, M. A., Aldovini, A. & Duba, R. ( 1994; ). Recombinant Mycobacterium bovis BCG secreting functional interleukin-2 enhances gamma interferon production by splenocytes. Infect Immun 62, 2508–2514.
    [Google Scholar]
  25. Ogata, K., Jaramillo, A., Cohen, W., Briand, J. P., Connan, F., Choppin, J., Muller, S. & Wodak, S. J. ( 2003; ). Automatic sequence design of major histocompatibility complex class I binding peptides impairing CD8+ T cell recognition. J Biol Chem 278, 1281–1290.[CrossRef]
    [Google Scholar]
  26. Okkels, L. M., Brock, I., Follmann, F., Agger, E. M., Arend, S. M., Ottenhoff, T. H., Oftung, F., Rosenkrands, I. & Andersen, P. ( 2003; ). PPE protein (Rv3873) from DNA segment RD1 of Mycobacterium tuberculosis: strong recognition of both specific T-cell epitopes and epitopes conserved within the PPE family. Infect Immun 71, 6116–6123.[CrossRef]
    [Google Scholar]
  27. Olsen, A. W., Hansen, P. R., Holm, A. & Andersen, P. ( 2000; ). Efficient protection against Mycobacterium tuberculosis by vaccination with a single subdominant epitope from the ESAT-6 antigen. Eur J Immunol 30, 1724–1732.[CrossRef]
    [Google Scholar]
  28. Orme, I. M., Andersen, P. & Boom, W. H. ( 1993; ). T cell response to Mycobacterium tuberculosis. J Infect Dis 167, 1481–1489.[CrossRef]
    [Google Scholar]
  29. Parker, K. C., Bednarek, M. A. & Coligan, J. E. ( 1994; ). Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152, 163–175.
    [Google Scholar]
  30. Qiu, B., Frait, K. A., Reich, F., Komuniecki, E. & Chensue, S. W. ( 2001; ). Chemokine expression dynamics in mycobacterial (type-1) and schistosomal (type-2) antigen-elicited pulmonary granuloma formation. Am J Pathol 158, 1503–1515.[CrossRef]
    [Google Scholar]
  31. Ramakrishnan, L., Federspiel, N. A. & Falkow, S. ( 2000; ). Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439.[CrossRef]
    [Google Scholar]
  32. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic, S. ( 1999; ). SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219.[CrossRef]
    [Google Scholar]
  33. Raupach, B. & Kaufmann, S. H. ( 2001; ). Immune responses to intracellular bacteria. Curr Opin Immunol 13, 417–428.[CrossRef]
    [Google Scholar]
  34. Razeghifard, M. R. ( 2004; ). On-column refolding of recombinant human interleukin-4 from inclusion bodies. Protein Expr Purif 37, 180–186.[CrossRef]
    [Google Scholar]
  35. Riedel, D. D. & Kaufmann, S. H. ( 1997; ). Chemokine secretion by human polymorphonuclear granulocytes after stimulation with Mycobacterium tuberculosis and lipoarabinomannan. Infect Immun 65, 4620–4623.
    [Google Scholar]
  36. Saviola, B., Woolwine, S. C. & Bishai, W. R. ( 2003; ). Isolation of acid-inducible genes of Mycobacterium tuberculosis with the use of recombinase-based in vivo expression technology. Infect Immun 71, 1379–1388.[CrossRef]
    [Google Scholar]
  37. Silva, C. L., Silva, M. F., Pietro, R. C. & Lowrie, D. B. ( 1996; ). Characterization of T cells that confer a high degree of protective immunity against tuberculosis in mice after vaccination with tumor cells expressing mycobacterial Hsp65. Infect Immun 64, 2400–2407.
    [Google Scholar]
  38. Skeiky, Y. A., Ovendale, P. J., Jen, S., Alderson, M. R., Dillon, D. C., Smith, S., Wilson, C. B., Orme, I. M., Reed, S. G. & Campos-Neto, A. ( 2000; ). T cell expression cloning of a Mycobacterium tuberculosis gene encoding a protective antigen associated with the early control of infection. J Immunol 165, 7140–7149.[CrossRef]
    [Google Scholar]
  39. Stenger, S., Rosat, J. P., Bloom, B. R., Krensky, A. M. & Modlin, R. L. ( 1999; ). Granulysin: a lethal weapon of cytolytic T cells. Immunol Today 20, 390–394.[CrossRef]
    [Google Scholar]
  40. Tascon, R. E., Stavropoulos, E., Lukacs, K. V. & Colston, M. J. ( 1998; ). Protection against Mycobacterium tuberculosis infection by CD8+ T cells requires the production of gamma interferon. Infect Immun 66, 830–834.
    [Google Scholar]
  41. Ulmer, J. B., Donnelly, J. J., Parker, S. E., Rhodes, G. H., Felgner, P. L., Dwarki, V. J., Gromkowski, S. H., Deck, R. R., DeWitt, C. M. & other authors ( 1993; ). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749.[CrossRef]
    [Google Scholar]
  42. Voskuil, M. I., Schnappinger, D., Rutherford, R., Liu, Y. & Schoolnik, G. K. ( 2004; ). Regulation of the PE/PPE genes. Tuberculosis (Edinb) 84, 256–262.[CrossRef]
    [Google Scholar]
  43. Young, S., O'Donnell, M., Lockhart, E., Buddle, B., Slobb, L., Luo, Y., De Lisle, G. & Buchan, G. ( 2002; ). Manipulation of immune responses to Mycobacterium bovis by vaccination with IL-2- and IL-18-secreting recombinant bacillus Calmette Guerin. Immunol Cell Biol 80, 209–215.[CrossRef]
    [Google Scholar]
  44. Zhou, X., Abdel Motal, U. M., Berg, L. & Jondal, M. ( 1992; ). In vivo priming of cytotoxic T lymphocyte responses in relation to in vitro up-regulation of major histocompatibility complex class I molecules by short synthetic peptides. Eur J Immunol 22, 3085–3090.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47565-0
Loading
/content/journal/jmm/10.1099/jmm.0.47565-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error