1887

Abstract

Typing analyses of 378 isolates collected between the years 2001 and 2005 from three northern representative regions of Tunisia revealed a highly homogeneous population. Indeed, 84.9 % of all tuberculosis (TB) cases were attributed to the Haarlem, LAM or T families. Strikingly, within each family, more than 60 % of TB cases were due to a single genotype. ST50 (Haarlem3) and ST42 (LAM9) genotypes were exceptionally predominant, representing 46.3 % of all typed isolates. ST50 showed an increased tendency for clustering and was more predominant in the extreme north of the country. By contrast, the more widespread ST42, which was apparently prevalent 17 years ago, displayed weak cluster individualization and a low transmission rate, consistent with its stable association with the Tunisian population. It is believed that both mass BCG vaccination, strictly applied for four decades, and the high endogamy rate that characterizes the Tunisian population could have profoundly shaped the population structure of by concurrently favouring the selection and accommodation of particular genotypes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47483-0
2008-07-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/7/864.html?itemId=/content/journal/jmm/10.1099/jmm.0.47483-0&mimeType=html&fmt=ahah

References

  1. Abebe, F. & Bjune, G. ( 2006; ). The emergence of Beijing family genotypes of Mycobacterium tuberculosis and low-level protection by bacille Calmette–Guérin (BCG) vaccines: is there a link? Clin Exp Immunol 145, 389–397.[CrossRef]
    [Google Scholar]
  2. Barnes, P. F. & Cave, M. D. ( 2003; ). Molecular epidemiology of tuberculosis. N Engl J Med 349, 1149–1156.[CrossRef]
    [Google Scholar]
  3. Ben Arab, S., Masmoudi, S., Beltaief, N., Hachicha, S. & Ayadi, H. ( 2004; ). Consanguinity and endogamy in Northern Tunisia and its impact on non-syndromic deafness. Genet Epidemiol 27, 74–79.[CrossRef]
    [Google Scholar]
  4. Brudey, K., Driscoll, J. R., Rigouts, L., Prodinger, W. M., Gori, A., Al-Hajoj, S. A., Allix, C., Aristimuno, L., Arora, J. & other authors ( 2006; ). Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6, 23 [CrossRef]
    [Google Scholar]
  5. Canetti, G., Fox, W., Khomenko, A., Mahler, H. T., Menon, N. K., Mitchison, D. A., Rist, N. & Smelev, N. A. ( 1969; ). Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ 41, 21–43.
    [Google Scholar]
  6. Filliol, I., Driscoll, J. R., van Soolingen, D., Kreiswirth, B. N., Kremer, K., Valetudie, G., Dang, D. A., Barlow, R., Banerjee, D. & other authors ( 2003; ). Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol 41, 1963–1970.[CrossRef]
    [Google Scholar]
  7. Filliol, I., Motiwala, A. S., Cavatore, M., Qi, W., Hazbon, M. H., Bobadilla del Valle, M., Fyfe, J., Garcia-Garcia, L., Rastogi, N. & other authors ( 2006; ). Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188, 759–772.[CrossRef]
    [Google Scholar]
  8. Gagneux, S., DeRiemer, K., Van, T., Kato-Maeda, M., de Jong, B. C., Narayanan, S., Nicol, M., Niemann, S., Kremer, K. & other authors ( 2006; ). Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103, 2869–2873.[CrossRef]
    [Google Scholar]
  9. Gutacker, M. M., Mathema, B., Soini, H., Shashkina, E., Kreiswirth, B. N., Graviss, E. A. & Musser, J. M. ( 2006; ). Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis 193, 121–128.[CrossRef]
    [Google Scholar]
  10. Gutierrez, M. C., Ahmed, N., Willery, E., Narayanan, S., Hasnain, S. E., Chauhan, D. S., Katoch, V. M., Vincent, V., Locht, C. & other authors ( 2006; ). Predominance of ancestral lineages of Mycobacterium tuberculosis in India. Emerg Infect Dis 12, 1367–1374.[CrossRef]
    [Google Scholar]
  11. Hermans, P. W., Messadi, F., Guebrexabher, H., van Soolingen, D., de Haas, P. E., Heersma, H., de Neeling, H., Ayoub, A., Portaels, F. & other authors ( 1995; ). Analysis of the population structure of Mycobacterium tuberculosis in Ethiopia, Tunisia, and The Netherlands: usefulness of DNA typing for global tuberculosis epidemiology. J Infect Dis 171, 1504–1513.[CrossRef]
    [Google Scholar]
  12. Hirsh, A. E., Tsolaki, A. G., DeRiemer, K., Feldman, M. W. & Small, P. M. ( 2004; ). Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci U S A 101, 4871–4876.[CrossRef]
    [Google Scholar]
  13. Kamerbeek, J., Schouls, L., Kolk, A., van Agterveld, M., van Soolingen, D., Kuijper, S., Bunschoten, A., Molhuizen, H., Shaw, R. & other authors ( 1997; ). Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35, 907–914.
    [Google Scholar]
  14. Kent, P. T. & Kubica, G. P. ( 1985; ). Public Health Mycobacteriology. A Guide for the Level III Laboratory. Atlanta, GA: Centers for Disease Control, US Department of Health and Human Services.
  15. Kubica, G. P. ( 1973; ). Differential identification of mycobacteria. II. Key features for identification of clinically significant mycobacteria. Am Rev Respir Dis 107, 9–21.
    [Google Scholar]
  16. Lopez, B., Aguilar, D., Orozco, H., Burger, M., Espitia, C., Ritacco, V., Barrera, L., Kremer, K., Hernandez-Pando, R. & other authors ( 2003; ). A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 133, 30–37.[CrossRef]
    [Google Scholar]
  17. Mardassi, H., Namouchi, A., Haltiti, R., Zarrouk, M., Mhenni, B., Karboul, A., Khabouchi, N., Gey van Pittius, N. C., Streicher, E. M. & other authors ( 2005; ). Tuberculosis due to resistant Haarlem strain, Tunisia. Emerg Infect Dis 11, 957–961.[CrossRef]
    [Google Scholar]
  18. Niobe-Eyangoh, S. N., Kuaban, C., Sorlin, P., Cunin, P., Thonnon, J., Sola, C., Rastogi, N., Vincent, V. & Gutierrez, M. C. ( 2003; ). Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J Clin Microbiol 41, 2547–2553.[CrossRef]
    [Google Scholar]
  19. Riou, S., el Younsi, C. & Chaabouni, H. ( 1989; ). Consanguinity in the population of northern Tunisia. Tunis Med 67, 167–172.
    [Google Scholar]
  20. Scott, A. N., Menzies, D., Tannenbaum, T. N., Thibert, L., Kozak, R., Joseph, L., Schwartzman, K. & Behr, M. A. ( 2005; ). Sensitivities and specificities of spoligotyping and mycobacterial interspersed repetitive unit–variable-number tandem repeat typing methods for studying molecular epidemiology of tuberculosis. J Clin Microbiol 43, 89–94.[CrossRef]
    [Google Scholar]
  21. Sola, C., Filliol, I., Gutiérrez, C., Mokrousov, I., Vincent, V. & Rastogi, N. ( 2001; ). Spoligotype database of Mycobacterium tuberculosis: biogeographical distribution of shared types and epidemiological and phylogenetic perspectives. Emerg Infect Dis 7, 390–396.[CrossRef]
    [Google Scholar]
  22. Supply, P., Mazars, E., Lesjean, S., Vincent, V., Gicquel, B. & Locht, C. ( 2000; ). Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 36, 762–771.
    [Google Scholar]
  23. Tunisian Ministry of Health ( 1999; ). National Programme of Tuberculosis: Technical Guide, 2nd edn.
  24. Tunisian Ministry of Health ( 2005; ). Tuberculosis in Tunisia: Annual Report.
  25. Van Soolingen, D., De Haas, P. E. W., Hermans, P. W. M., Groenen, P. M. A. & van Embden, J. D. A. ( 1993; ). Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol 31, 1987–1995.
    [Google Scholar]
  26. Vitol, I., Driscoll, J., Kreiswirth, B., Kurepina, N. & Bennett, K. P. ( 2006; ). Identifying Mycobacterium tuberculosis complex strain families using spoligotypes. Infect Genet Evol 6, 491–504.[CrossRef]
    [Google Scholar]
  27. Zozio, T., Allix, C., Gunal, S., Saribas, Z., Alp, A., Durmaz, R., Fauville-Dufaux, M., Rastogi, N. & Sola, C. ( 2005; ). Genotyping of Mycobacterium tuberculosis clinical isolates in two cities of Turkey: description of a new family of genotypes that is phylogeographically specific for Asia Minor. BMC Microbiol 5, 44 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47483-0
Loading
/content/journal/jmm/10.1099/jmm.0.47483-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error