1887

Abstract

An inexpensive and technically less-demanding methodology to quantify HIV-1 viral load would be of great value for resource-limited settings, where the nucleic-acid amplification technique (NAAT) is impractical and/or resource-prohibitive. In this study, an HIV-1 reverse-transcriptase enzyme-activity assay (ExaVir Load assay, version 1) was compared with the gold standard RT-PCR assay, Roche HIV-1 Amplicor Monitor, version 1.5. A total of 121 plasma specimens were used for the evaluation. ExaVir Load had a sensitivity of 97 % and a specificity of 71 % in identifying specimens with <400 copies ml in the Roche RT-PCR assay as being less than the detection limit of the assay (5500 copies ml). The mean difference (95 % limits of agreement) between Roche RT-PCR and ExaVir Load was –0.23 (−1.59 to 1.13) log(copies ml) by Bland–Altman analysis. Significant negative correlations were seen between CD4 T-cell counts and the ExaVir Load assay (=−0.32, <0.05), and between CD4 T-cell counts and the Roche RT-PCR (=−0.38, <0.01). The present study with HIV-1 showed a strong correlation between the ExaVir Load assay and the RT-PCR assay. Hence, the ExaVir Load assay could be considered for use in resource-limited settings as an alternative viral-load assay to the standard NAAT-based assay after further evaluation with prospective specimens.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47456-0
2007-12-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/12/1611.html?itemId=/content/journal/jmm/10.1099/jmm.0.47456-0&mimeType=html&fmt=ahah

References

  1. Bland, J. M. & Altman, D. G. ( 1986; ). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1, 307–310.
    [Google Scholar]
  2. Braun, J., Plantier, J., Hellot, M., Tuaillon, E., Gueudin, M., Damond, F., Malmstenc, A., Corrigan, G. E. & Simon, F. ( 2003; ). A new quantitative HIV load assay based on plasma virion reverse transcriptase activity for the different types, groups and subtypes. AIDS 17, 331–336.[CrossRef]
    [Google Scholar]
  3. Cecelia, A. J., Christybai, P., Anand, S., Jayakumar, K., Gurunathan, T., Vidya, P., Solomon, S. & Kumarasamy, N. ( 2006; ). Usefulness of an observational database to assess antiretroviral treatment trends in India. Natl Med J India 19, 14–17.
    [Google Scholar]
  4. García, F., Vidal, C., Gatell, J. M., Miro, J. M., Soriano, A. & Pumarola, T. ( 1997; ). Viral load in asymptomatic patients with CD4+ lymphocyte counts above 500×106/l. AIDS 11, 53–57.[CrossRef]
    [Google Scholar]
  5. Jennings, C., Fiscus, S. A., Crowe, S. M., Danilovic, A. D., Morack, R. J., Scianna, S., Cachafeiro, A., Brambilla, D. J., Schupbach, J. & other authors ( 2005; ). Comparison of two human immunodeficiency virus (HIV) RNA surrogate assays to the standard HIV RNA assay. J Clin Microbiol 43, 5950–5956.[CrossRef]
    [Google Scholar]
  6. Kannangai, R., Ramalingam, S., Jesudason, M. V., Vijayakumar, T. S., Abraham, O. C., Zachariah, A. & Sridharan, G. ( 2001; ). Correlation of CD4+ T-cell counts estimated by an immunocapture technique (capcellia) with viral loads in human immunodeficiency virus-seropositive individuals. Clin Diagn Lab Immunol 8, 1286–1288.
    [Google Scholar]
  7. Ledergerber, B., Flepp, M., Boni, J., Tomasik, Z., Cone, R. W., Luthy, R. & Schupbach, J. ( 2000; ). Human immunodeficiency virus type 1 p24 concentration measured by boosted ELISA of heat-denatured plasma correlates with decline in CD4 cells, progression to AIDS, and survival: comparison with viral RNA measurement. J Infect Dis 181, 1280–1288.[CrossRef]
    [Google Scholar]
  8. Malmsten, A., Shao, X. W., Aperia, K., Corrigan, G. E., Sandstrom, E., Kallander, C. F. R., Leitner, T. & Gronowitz, J. S. ( 2003; ). HIV-1 viral load determination based on reverse transcriptase activity recovered from human plasma. J Med Virol 71, 347–359.[CrossRef]
    [Google Scholar]
  9. Osmanov, S., Pattou, C., Walker, N., Schwardlander, B. & Esparza, J., The WHO-UNAIDS Network for HIV Isolation and Characterization ( 2002; ). Estimated global distribution and regional spread of HIV-1 genetic subtypes in the year 2000. J Acquir Immune Defic Syndr 29, 184–190.[CrossRef]
    [Google Scholar]
  10. Shao, X. W., Malmsten, A., Lennerstrand, J., Sönnerborg, A., Unge, T., Gronowitzand, J. S. & Kallander, C. F. R. ( 2003; ). Use of HIV-1 reverse transcriptase recovered from human plasma for phenotypic drug susceptibility testing. AIDS 17, 1463–1471.[CrossRef]
    [Google Scholar]
  11. Sivapalasingam, S., Essajee, S., Nyambi, P. N., Itri, V., Hanna, B., Holzman, R. & Valentine, F. ( 2005; ). Human immunodeficiency virus (HIV) reverse transcriptase activity correlates with HIV RNA load: implications for resource-limited settings. J Clin Microbiol 43, 3793–3796.[CrossRef]
    [Google Scholar]
  12. Solomon, S., Solomon, S. S. & Ganesh, A. K. ( 2006a; ). AIDS in India. Postgrad Med J 82, 545–547.[CrossRef]
    [Google Scholar]
  13. Solomon, S. S., Kumarasamy, N., Celentano, D. D., Yepthomi, T. H., Arvind, V. P. & Solomon, S. ( 2006b; ). Trends in HIV-related morbidity among patients admitted to a south Indian tertiary hospital between 1997 and 2003. AIDS Care 18, 366–370.[CrossRef]
    [Google Scholar]
  14. Stevens, G., Rekhviashvili, N., Scott, L. E., Gonin, R. & Stevens, W. ( 2005; ). Evaluation of two commercially available, inexpensive alternative assays used for assessing viral load in a cohort of human immunodeficiency virus type 1 subtype C-infected patients from South Africa. J Clin Microbiol 43, 857–861.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47456-0
Loading
/content/journal/jmm/10.1099/jmm.0.47456-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error