1887

Abstract

Reactive oxygen species, such as hydrogen peroxide (HO), are involved in various aspects of tumour development. Decreasing their levels can therefore be a promising approach for colon cancer prevention. The objective of this study was to evaluate the effect of catalase-producing on the prevention of an experimental murine 1,2-dimethylhydrazine (DMH)-induced colon cancer. DMH-treated BALB/c mice received either a catalase-producing strain or the isogenic non-catalase-producing strain as a control, whereas other untreated mice did not receive bacterial supplementation. Catalase activity and HO levels in intestinal fluids and blood samples were measured, and changes in the histology of the large intestines during tumour progression were evaluated. The catalase-producing strain used in this study was able to slightly increase catalase activities in DMH-treated mice (1.19±0.08 U ml) and reduce HO levels (3.4±1.1 μM) compared to (i) animals that received the non-catalase-producing strain (1.00±0.09 U ml, 9.0±0.8 μM), and (ii) those that did not receive bacterial supplementation (1.06±0.07 U ml, 10.0±1.1 μM). Using the histopathological grading scale of chemically induced colorectal cancer, animals that received the catalase-producing had a significantly lesser extent of colonic damage and inflammation (2.0±0.4) compared to animals that received the non-catalase-producing (4.0±0.3) or those that did not receive bacterial supplementation (4.7±0.5). The catalase-producing strain used in this study was able to prevent tumour appearance in an experimental DMH-induced colon cancer model.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47403-0
2008-01-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/1/100.html?itemId=/content/journal/jmm/10.1099/jmm.0.47403-0&mimeType=html&fmt=ahah

References

  1. Abriouel, H., Herrmann, A., Starke, J., Yousif, N. M., Wijaya, A., Tauscher, B., Holzapfel, W. & Franz, C. M. ( 2004; ). Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Appl Environ Microbiol 70, 603–606.[CrossRef]
    [Google Scholar]
  2. Amberger, H. ( 1986; ). Different autochthonous models of colorectal cancer in the rat. J Cancer Res Clin Oncol 111, 157–159.[CrossRef]
    [Google Scholar]
  3. Ameho, C. K., Adjei, A. A., Harrison, E. K., Takeshita, K., Morioka, T., Arakaki, Y., Ito, E., Suzuki, I., Kulkarni, A. D. & other authors ( 1997; ). Prophylactic effect of dietary glutamine supplementation on interleukin 8 and tumour necrosis factor α production in trinitrobenzene sulphonic acid induced colitis. Gut 41, 487–493.[CrossRef]
    [Google Scholar]
  4. Berlett, B. S. & Stadtman, E. R. ( 1997; ). Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272, 20313–20316.[CrossRef]
    [Google Scholar]
  5. Condon, S. ( 1987; ). Responses of lactic acid bacteria to oxygen. FEMS Microbiol Lett 46, 269–280.[CrossRef]
    [Google Scholar]
  6. de Moreno de LeBlanc, A. & Perdigón, G. ( 2004; ). Yogurt feeding inhibits promotion and progression of experimental colorectal cancer. Med Sci Monit 10, BR96–BR104.
    [Google Scholar]
  7. de Ruyter, P. G., Kuipers, O. P. & de Vos, W. M. ( 1996; ). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62, 3662–3667.
    [Google Scholar]
  8. Drouault, S., Corthier, G., Ehrlich, D. & Renault, P. ( 1999; ). Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl Environ Microbiol 65, 4881–4886.
    [Google Scholar]
  9. Farr, S. B. & Kogoma, T. ( 1991; ). Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55, 561–585.
    [Google Scholar]
  10. Fuller, R. ( 1992; ). History and development of probiotics. In Probiotics - the Scientific Basis, pp. 1–8. Edited by R. Fuller. New York: Chapman and Hall.
  11. Gamberini, M. & Leite, L. C. C. ( 1997; ). Proliferation of mouse fibroblasts induced by 1,2-dimethylhydrazine auto-oxidation: role of iron and free radicals. Biochem Biophys Res Commun 234, 44–47.[CrossRef]
    [Google Scholar]
  12. Klijn, N., Weerkamp, A. H. & de Vos, W. M. ( 1995; ). Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microbiol 61, 2771–2774.
    [Google Scholar]
  13. Knauf, H. J., Vogel, R. F. & Hammes, W. P. ( 1992; ). Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol 58, 832–839.
    [Google Scholar]
  14. Kruidenier, L. & Verspaget, H. W. ( 2002; ). Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease – radicals or ridiculous? Aliment Pharmacol Ther 16, 1997–2015.[CrossRef]
    [Google Scholar]
  15. Kruidenier, L., van Meeteren, M. E., Kuiper, I., Jaarsma, D., Lamers, C. B., Zijlstra, F. J. & Verspage, H. W. ( 2003; ). Attenuated mild colonic inflammation and improved survival from severe DSS colitis of transgenic Cu/Zn-SOD mice. Free Radic Biol Med 34, 753–765.[CrossRef]
    [Google Scholar]
  16. Le Loir, Y., Nouaille, S., Commissaire, J., Bretigny, L., Gruss, A. & Langella, P. ( 2001; ). Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67, 4119–4127.[CrossRef]
    [Google Scholar]
  17. Monte, M., Davel, L. E. & Sacerdote de Lustig, E. ( 1997; ). Hydrogen peroxide is involved in lymphocyte activation mechanisms to induce angiogenesis. Eur J Cancer 33, 676–682.[CrossRef]
    [Google Scholar]
  18. Nishikawa, M., Tamada, A., Kumai, H., Yamashita, F. & Hashida, M. ( 2002; ). Inhibition of experimental pulmonary metastasis by controlling biodistribution of catalase in mice. Int J Cancer 99, 474–479.[CrossRef]
    [Google Scholar]
  19. Nishikawa, M., Tamada, A., Hyoudou, K., Umeyama, Y., Takahashi, Y., Kobayashi, Y., Kumai, H., Ishida, E., Staud, F. & other authors ( 2004; ). Inhibition of experimental hepatic metastasis by targeted delivery of catalase in mice. Clin Exp Metastasis 21, 213–221.[CrossRef]
    [Google Scholar]
  20. Nonaka, Y., Iwagaki, H., Kimura, T., Fuchimoto, S. & Orita, K. ( 1993; ). Effect of reactive oxygen intermediates on the in vitro invasive capacity of tumor cells and liver metastasis in mice. Int J Cancer 54, 983–986.[CrossRef]
    [Google Scholar]
  21. Noonpakdee, W., Sitthimonchai, S., Panyim, S. & Lertsiri, S. ( 2004; ). Expression of the catalase gene katA in starter culture Lactobacillus plantarum TISTR850 tolerates oxidative stress and reduces lipid oxidation in fermented meat product. Int J Food Microbiol 95, 127–135.[CrossRef]
    [Google Scholar]
  22. Nouaille, S., Ribeiro, L. A., Miyoshi, A., Pontes, D., Le Loir, Y., Oliveira, S. C., Langella, P. & Azevedo, V. ( 2003; ). Heterologous protein production and delivery systems for Lactococcus lactis. Genet Mol Res 2, 102–111.
    [Google Scholar]
  23. Rochat, T., Miyoshi, A., Gratadoux, J. J., Duwat, P., Sourice, S., Azevedo, V. & Langella, P. ( 2005; ). High-level resistance to oxidative stress in Lactococcus lactis conferred by Bacillus subtilis catalase KatE. Microbiology 151, 3011–3018.[CrossRef]
    [Google Scholar]
  24. Rochat, T., Gratadoux, J. J., Gruss, A., Corthier, G., Maguin, E., Langella, P. & van de Guchte, M. ( 2006; ). Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk. Appl Environ Microbiol 72, 5143–5149.[CrossRef]
    [Google Scholar]
  25. Roos, D. ( 1991; ). The involvement of oxygen radicals in microbicidal mechanism of leukocytes and macrophages. Klin Wochenschr 69, 975–980.[CrossRef]
    [Google Scholar]
  26. Sainte-Marie, G. ( 1962; ). A paraffin embedding technique for studies employing immuno-fluorescence. J Histochem Cytochem 10, 250–256.[CrossRef]
    [Google Scholar]
  27. Szatrowski, T. P. & Nathan, C. F. ( 1991; ). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51, 794–798.
    [Google Scholar]
  28. Yoshizaki, N., Mogi, Y., Muramatsu, H., Koike, K., Kogawa, K. & Niitsu, Y. ( 1994; ). Suppressive effect of recombinant human Cu, Zn-superoxide dismutase on lung metastasis of murine tumor cells. Int J Cancer 57, 287–292.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47403-0
Loading
/content/journal/jmm/10.1099/jmm.0.47403-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error