1887

Abstract

Bowel commensals appear to be an important source of antigens that drive the chronic immune inflammation characteristic of Crohn's disease and ulcerative colitis [inflammatory bowel diseases (IBD)]. Biopsy-associated bacteria are assumed to be particularly relevant in bacteriological investigations of IBD because they are assumed to be located on the mucosal surface and hence close to immunological cells. This investigation analysed the bacterial collections associated with bowel biopsies, aspirates of residual fluid after bowel cleansing and faeces from IBD patients and non-IBD subjects in Edmonton, Canada, and Mexico City, Mexico. Temporal temperature gradient gel electrophoresis of 16S rRNA gene sequences produced profiles of the bacterial collections and their similarities were compared. Similarity analysis showed that the profiles did not cluster according to disease status, but that Canadian and Mexican profiles could be differentiated by this method. Comparison of biopsy, aspirate and faecal samples obtained from the same subject showed that, on average, the profiles were highly similar. Therefore, biopsy-associated bacteria are likely to represent, at least in part, contaminants from the fluid, which resembles a faecal solution, that pools in the bowel after cleansing prior to endoscopy.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47321-0
2008-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/1/111.html?itemId=/content/journal/jmm/10.1099/jmm.0.47321-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Ashelford, K. E., Chuzhanova, N. A., Fry, J. C., Jones, A. J. & Weightman, A. J. ( 2005; ). At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71, 7724–7736.[CrossRef]
    [Google Scholar]
  3. Bernstein, C. N., Wajda, A., Svenson, L. W., MacKenzie, A., Koehoorn, M., Jackson, M., Fedorak, R., Israel, D. & Blanchard, J. F. ( 2006; ). The epidemiology of inflammatory bowel disease in Canada: a population-based study. Am J Gastroenterol 101, 1559–1568.[CrossRef]
    [Google Scholar]
  4. Bibiloni, R., Simon, M. A., Albright, C., Sartor, B. & Tannock, G. W. ( 2005; ). Analysis of the large bowel microbiota of colitic mice using PCR/DGGE. Lett Appl Microbiol 41, 45–51.[CrossRef]
    [Google Scholar]
  5. Bibiloni, R., Mangold, M., Madsen, K. L., Fedorak, R. N. & Tannock, G. W. ( 2006; ). The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn's disease and ulcerative colitis patients. J Med Microbiol 55, 1141–1149.[CrossRef]
    [Google Scholar]
  6. Bouma, G. & Strober, W. ( 2003; ). The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3, 521–533.[CrossRef]
    [Google Scholar]
  7. Hayashi, H., Takahashi, R., Nishi, T., Sakamoto, M. & Benno, Y. ( 2005; ). Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 54, 1093–1101.[CrossRef]
    [Google Scholar]
  8. Lay, C., Rigottier-Gois, L., Holmstrom, K., Rajilic, M., Vaughan, E. E., de Vos, W. M., Collins, M. D., Thiel, R., Namsolleck, P. & other authors ( 2005; ). Colonic microbiota signatures across five northern European countries. Appl Environ Microbiol 71, 4153–4155.[CrossRef]
    [Google Scholar]
  9. Lepage, P., Seksik, P., Sutren, M., de la Cochetiere, M.-F., Jian, R., Marteau, P. & Dore, J. ( 2005; ). Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 11, 473–480.[CrossRef]
    [Google Scholar]
  10. McCartney, A. L., Wang, W. & Tannock, G. W. ( 1996; ). Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl Environ Microbiol 62, 4608–4613.
    [Google Scholar]
  11. Ott, S. J., Musfeldt, M., Wenderoth, D. F., Hampe, J., Brant, O., Folsch, U. R., Timmis, K. N. & Schreiber, S. ( 2004; ). Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685–693.[CrossRef]
    [Google Scholar]
  12. Pérez Torres, E., Sobrino Cossío, S., García Guerrero, V. A., Abdo Francis, M., Murguía Domíniquez, D. & Bernal Sahaqún, F. ( 1992; ). Crohn's disease. Medical-surgical experience. A 10-year retrospective study. Rev Gastroenterol Mex 57, 21–26 (in Spanish).
    [Google Scholar]
  13. Podolsky, D. K. ( 2002; ). Inflammatory bowel disease. N Engl J Med 347, 417–429.[CrossRef]
    [Google Scholar]
  14. Prindiville, T., Cantrell, M. & Wilson, K. H. ( 2004; ). Ribosomal DNA sequence analysis of mucosa-associated bacteria in Crohn's disease. Inflamm Bowel Dis 10, 824–833.[CrossRef]
    [Google Scholar]
  15. Rath, H. C., Wilson, K. H. & Sartor, R. B. ( 1999; ). Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun 67, 2969–2974.
    [Google Scholar]
  16. Rawls, J. F., Mahowald, M. A., Ley, R. E. & Gordon, J. I. ( 2006; ). Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433.[CrossRef]
    [Google Scholar]
  17. Schultsz, C., van den Berg, F., Ten Kate, F. W., Tytgat, G. N. & Dankert, J. ( 1999; ). The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology 117, 1089–1097.[CrossRef]
    [Google Scholar]
  18. Seksik, P., Rigottier-Gois, L., Gramet, G., Sutren, M., Pochat, P., Marteau, P., Jian, R. & Doré, J. ( 2003; ). Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52, 237–242.[CrossRef]
    [Google Scholar]
  19. Seksik, P., Lepage, P., de la Cochetiere, M.-F., Bourreille, A., Sutren, M., Galmiche, J.-P., Dore, J. & Marteau, P. ( 2005; ). Search for localized dysbiosis in Crohn's disease ulcerations by temporal temperature gradient gel electrophoresis of 16S rRNA. J Clin Microbiol 43, 4654–4658.[CrossRef]
    [Google Scholar]
  20. Snart, J., Bibiloni, R., Grayson, T., Lay, C., Zhang, H., Allison, G. E., Laverdiere, J. K., Temelli, F., Vasanthan, T. & other authors ( 2006; ). Supplementation of the diet with high-viscosity β-glucan results in enrichment for lactobacilli in the rat cecum. Appl Environ Microbiol 72, 1925–1931.[CrossRef]
    [Google Scholar]
  21. Sokol, H., Lepage, P., Seksik, P., Dore, J. & Marteau, P. ( 2007; ). Molecular comparison of dominant microbiota associated with injured versus healthy mucosa in ulcerative colitis. Gut 56, 152–154.
    [Google Scholar]
  22. Swidsinski, A., Ladhoff, A., Pernthaler, A., Swidsinski, S., Loening-Baucke, V., Ortner, M., Weber, J., Hoffmann, U., Schreiber, S. & other authors ( 2002; ). Mucosal flora in inflammatory bowel disease. Gastroenterology 122, 44–54.[CrossRef]
    [Google Scholar]
  23. Tannock, G. W., Munro, K., Harmsen, H. J. M., Welling, G. W., Smart, J. & Gopal, P. K. ( 2000; ). Analysis of the fecal microflora of human subjects consuming a probiotic containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66, 2578–2588.[CrossRef]
    [Google Scholar]
  24. Tannock, G. W., Munro, K., Bibiloni, R., Simon, M. A., Hargreaves, P., Gopal, P., Harmsen, H. & Welling, G. ( 2004; ). Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl Environ Microbiol 70, 2129–2136.[CrossRef]
    [Google Scholar]
  25. Zoetendal, E. G., Akkermans, A. D. & de Vos, W. M. ( 1998; ). Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64, 3854–3859.
    [Google Scholar]
  26. Zoetendal, E. G., von Wright, A., Vilpponene-Salmela, T., Ben-Amor, K., Akkermans, A. D. L. & de Vos, W. M. ( 2002; ). Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68, 3401–3407.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47321-0
Loading
/content/journal/jmm/10.1099/jmm.0.47321-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error