1887

Abstract

The major outer-membrane proteins RagA and RagB of are considered to form a receptor complex functionally linked to TonB. In this study, . mutants with , or both deleted were constructed from strain W83 as the parent to examine the physiological and pathological functions of RagA and RagB. The double-deletion mutant completely lacked both RagA and RagB, whereas the Δ mutant reduced RagB expression considerably and the Δ mutant produced degraded RagA. Growth of the three mutants in a nutrient-rich medium and synthetic media containing digested protein as a unique nutrient source was similar to that of the parental strain; however, both the Δ and Δ mutants exhibited very slow growth in a synthetic medium containing undigested, native protein, and the two mutants tended to lose their viability during experiments, although gingipain (protease) activities were unchanged in the mutants. A mouse model showed that the Δ mutant had reduced virulence. Cell-surface labelling with biotin and dextran revealed that both RagA and RagB localized on the outermost cell surface. A cross-linking experiment using wild-type showed that RagA and RagB were closely associated with each other. Furthermore, co-immunoprecipitation confirmed that RagA and RagB formed a protein–protein complex. These results suggest that physically associated RagA and RagB may stabilize themselves on the cell surface and function as active transporters of large degradation products of protein and in part as a virulence factor.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47289-0
2007-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/11/1536.html?itemId=/content/journal/jmm/10.1099/jmm.0.47289-0&mimeType=html&fmt=ahah

References

  1. Andrés, M. T., Chung, W. O., Roberts, M. C. & Fierro, J. F. ( 1998; ). Antimicrobial susceptibilities of Porphyromonas gingivalis, Prevotella intermedia, and Prevotella nigrescens spp. isolated in Spain. Antimicrob Agents Chemother 42, 3022–3023.
    [Google Scholar]
  2. Bonass, W. A., Marsh, P. D., Percival, R. S., Aduse-Opoku, J., Hanley, S. A., Devine, D. A. & Curtis, M. A. ( 2000; ). Identification of ragAB as a temperature-regulated operon of Porphyromonas gingivalis W50 using differential display of randomly primed RNA. Infect Immun 68, 4012–4017.[CrossRef]
    [Google Scholar]
  3. Bradburne, J. A., Godfrey, P., Choi, J. H. & Mathis, J. N. ( 1993; ). In vivo labeling of Escherichia coli cell envelope proteins with N-hydroxysuccinimide esters of biotin. Appl Environ Microbiol 59, 663–669.
    [Google Scholar]
  4. Curtis, M. A., Slaney, J. M., Carman, R. J. & Johnson, N. W. ( 1991; ). Identification of the major surface protein antigens of Porphyromonas gingivalis using IgG antibody reactivity of periodontal case–control serum. Oral Microbiol Immunol 6, 321–326.[CrossRef]
    [Google Scholar]
  5. Curtis, M. A., Hanley, S. A. & Aduse-Opoku, J. ( 1999; ). The rag locus of Porphyromonas gingivalis: a novel pathogenicity island. J Periodontal Res 34, 400–405.[CrossRef]
    [Google Scholar]
  6. Frandsen, E. V. G., Poulsen, K., Curtis, M. A. & Kilian, M. ( 2001; ). Evidence of recombination in Porphyromonas gingivalis and random distribution of putative virulence markers. Infect Immun 69, 4479–4485.[CrossRef]
    [Google Scholar]
  7. Gardner, R. G., Russell, J. B., Wilson, D. B., Wang, G. R. & Shoemaker, N. B. ( 1996; ). Use of a modified BacteroidesPrevotella shuttle vector to transfer a reconstructed β-1,4-d-endoglucanase gene into Bacteroides uniformis and Prevotella ruminicola B14. Appl Environ Microbiol 62, 196–202.
    [Google Scholar]
  8. Grenier, D., Imbeault, S., Plamondon, P., Grenier, G., Nakayama, K. & Mayrand, D. ( 2001; ). Role of gingipains in growth of Porphyromonas gingivalis in the presence of human serum albumin. Infect Immun 69, 5166–5172.[CrossRef]
    [Google Scholar]
  9. Hall, L. M. C., Fawell, S. C., Shi, X., Faray-Kele, M.-C., Aduse-Opoku, J., Whiley, R. A. & Curtis, M. A. ( 2005; ). Sequence diversity and antigenic variation at the rag locus of Porphyromonas gingivalis. Infect Immun 73, 4253–4262.[CrossRef]
    [Google Scholar]
  10. Hamada, N., Sojar, H. T., Cho, M. I. & Genco, R. J. ( 1996; ). Isolation and characterization of a minor fimbria from Porphyromonas gingivalis. Infect Immun 64, 4788–4794.
    [Google Scholar]
  11. Hanley, S. A., Aduse-Opoku, J. & Curtis, M. A. ( 1999; ). A 55-kilodalton immunodominant antigen of Porphyromonas gingivalis W50 has arisen via horizontal gene transfer. Infect Immun 67, 1157–1171.
    [Google Scholar]
  12. Horton, R. M., Ho, S. N., Pullen, J. K., Hunt, H. D., Cai, Z. & Pease, L. R. ( 1993; ). Gene splicing by overlap extension. Methods Enzymol 217, 270–279.
    [Google Scholar]
  13. Ikeda, T. & Yoshimura, F. ( 2002; ). A resistance-nodulation-cell division family xenobiotic efflux pump in an obligate anaerobe, Porphyromonas gingivalis. Antimicrob Agents Chemother 46, 3257–3260.[CrossRef]
    [Google Scholar]
  14. Imai, M., Murakami, Y., Nagano, K., Nakamura, H. & Yoshimura, F. ( 2005; ). Major outer membrane proteins from Porphyromonas gingivalis: strain variation, distribution, and clinical significance in periradicular lesions. Eur J Oral Sci 113, 391–399.[CrossRef]
    [Google Scholar]
  15. Kamio, Y. & Nikaido, H. ( 1977; ). Outer membrane of Salmonella typhimurium. Identification of proteins exposed on cell surface. Biochim Biophys Acta 464, 589–601.[CrossRef]
    [Google Scholar]
  16. Kleinfelder, J. W., Müller, R. F. & Lange, D. E. ( 1999; ). Antibiotic susceptibility of putative periodontal pathogens in advanced periodontitis patients. J Clin Periodontol 26, 347–351.[CrossRef]
    [Google Scholar]
  17. Kumagai, Y., Konishi, K., Gomi, T., Yagishita, H., Yajima, A. & Yoshikawa, M. ( 2000; ). Enzymatic properties of dipeptidyl aminopeptidase IV produced by the periodontal pathogen Porphyromonas gingivalis and its participation in virulence. Infect Immun 68, 716–724.[CrossRef]
    [Google Scholar]
  18. Lamont, R. J. & Jenkinson, H. F. ( 1998; ). Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62, 1244–1263.
    [Google Scholar]
  19. Murakami, Y., Imai, M., Nakamura, H. & Yoshimura, F. ( 2002; ). Separation of the outer membrane and identification of major outer membrane proteins from Porphyromonas gingivalis. Eur J Oral Sci 110, 157–162.[CrossRef]
    [Google Scholar]
  20. Murakami, Y., Imai, M., Mukai, Y., Ichihara, S., Nakamura, H. & Yoshimura, F. ( 2004; ). Effects of various culture environments on expression of major outer membrane proteins from Porphyromonas gingivalis. FEMS Microbiol Lett 230, 159–165.[CrossRef]
    [Google Scholar]
  21. Nagano, K., Read, E. K., Murakami, Y., Masuda, T., Noguchi, T. & Yoshimura, F. ( 2005; ). Trimeric structure of major outer membrane proteins homologous to OmpA in Porphyromonas gingivalis. J Bacteriol 187, 902–911.[CrossRef]
    [Google Scholar]
  22. NCCLS ( 1997; ). Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 5th edn, vol. 21. Approved standard M11-A5. Wayne, PA: National Committee for Clinical Laboratory Standards.
  23. Nelson, K. E., Fleischmann, R. D., DeBoy, R. T., Paulsen, I. T., Fouts, D. E., Eisen, J. A., Daugherty, S. C., Dodson, R. J., Durkin, A. S. & other authors ( 2003; ). Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol 185, 5591–5601.[CrossRef]
    [Google Scholar]
  24. Nishikawa, K. & Yoshimura, F. ( 2001; ). The response regulator FimR is essential for fimbrial production of the oral anaerobe Porphyromonas gingivalis. Anaerobe 7, 255–262.[CrossRef]
    [Google Scholar]
  25. Ochman, H., Gerber, A. S. & Hartl, D. L. ( 1988; ). Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623.
    [Google Scholar]
  26. Shi, X., Hanley, S. A., Faray-Kele, M. C., Fawell, S. C., Aduse-Opoku, J., Whiley, R. A., Curtis, M. A. & Hall, L. M. ( 2007; ). The rag locus of Porphyromonas gingivalis contributes to virulence in a murine model of soft tissue destruction. Infect Immun 75, 2071–2074.[CrossRef]
    [Google Scholar]
  27. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  28. Yoshimura, F., Takahashi, K., Nodasaka, Y. & Suzuki, T. ( 1984; ). Purification and characterization of a novel type of fimbriae from the oral anaerobe Bacteroides gingivalis. J Bacteriol 160, 949–957.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47289-0
Loading
/content/journal/jmm/10.1099/jmm.0.47289-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error