1887

Abstract

Lipopolysaccharide (LPS) is a major surface component of , as with all Gram-negative bacteria. The effect of LPS on infectivity of human epithelial cells was investigated. LPS and LPS antibody significantly reduced infectivity, mostly in a dose-dependent manner. As the structure of LPS in is simple and consists only of lipid A and 3-deoxy--manno-octulosonic acid (Kdo), we investigated whether lipid A or Kdo was inhibitory to chlamydial infectivity. Polymyxin B, as a lipid A inhibitor, and Kdo considerably reduced infectivity. With all the LPS inhibitors used, there was greater inhibition against serovar E than serovar LGV. These results suggest a role for LPS in chlamydial infectivity. Elucidation of how LPS acts in infectivity and identification of host-cell receptors would help in understanding pathogenicity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47237-0
2008-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/3/261.html?itemId=/content/journal/jmm/10.1099/jmm.0.47237-0&mimeType=html&fmt=ahah

References

  1. Alfa, M. J. & DeGagne, P. ( 1997; ). Attachment of Haemophilus ducreyi to human foreskin fibroblasts involves LOS and fibronectin. Microb Pathog 22, 39–46.[CrossRef]
    [Google Scholar]
  2. Belanger, M., Dubreuil, D., Harel, J., Girard, C. & Jacques, M. ( 1990; ). Role of lipopolysaccharide in adherence of Actinobacillus pleuropneumoniae to porcine tracheal rings. Infect Immun 58, 3523–3530.
    [Google Scholar]
  3. Brade, H. ( 1999; ). Chlamydial lipopolysaccharide. In Endotoxin in Health and Disease, pp. 229–242. Edited by H. Brade, S. M. Opal, S. N. Vogel & D. C. Morrison. New York: Marcel Dekker.
  4. Byrne, G. I., Stephens, R. S., Ada, G., Caldwell, H. D., Su, H., Morrison, R. P., Van der Pol, B., Bavoil, P. & other authors ( 1993; ). Workshop on in vitro neutralization of Chlamydia trachomatis: summary of proceedings. J Infect Dis 168, 415–420.[CrossRef]
    [Google Scholar]
  5. Campbell, S., Richmond, S. J., Yates, P. S. & Storey, C. C. ( 1994; ). Lipopolysaccharide in cells infected by Chlamydia trachomatis. Microbiology 140, 1995–2002.[CrossRef]
    [Google Scholar]
  6. Chernesky, M., Jang, D., Copes, D., Patel, J., Petrich, A., Biers, K., Sproston, A. & Kapala, J. ( 2001; ). Comparison of a polymer conjugate-enhanced enzyme immunoassay to ligase chain reaction for diagnosis of Chlamydia trachomatis in endocervical swabs. J Clin Microbiol 39, 2306–2307.[CrossRef]
    [Google Scholar]
  7. Collett, B. A., Newhall, W. J., Jersild, R. A., Jr & Jones, R. B. ( 1989; ). Detection of surface-exposed epitopes on Chlamydia trachomatis by immune electron microscopy. J Gen Microbiol 135, 85–94.
    [Google Scholar]
  8. Fadel, S. & Eley, A. ( 2004; ). Chlorate: a reversible inhibitor of proteoglycan sulphation in Chlamydia trachomatis-infected cells. J Med Microbiol 53, 93–95.[CrossRef]
    [Google Scholar]
  9. Harvey, H. A., Porat, N., Campbell, C. A., Jennings, M., Gibson, B. W., Phillips, N. J., Apicella, M. A. & Blake, M. S. ( 2000; ). Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol Microbiol 36, 1059–1070.[CrossRef]
    [Google Scholar]
  10. Heine, H., Muller-Loennies, S., Brade, L., Lindner, B. & Brade, H. ( 2003; ). Endotoxic activity and chemical structure of lipopolysaccharides from Chlamydia trachomatis serotypes E and L2 and Chlamydophila psittaci 6BC. Eur J Biochem 270, 440–450.[CrossRef]
    [Google Scholar]
  11. Jacques, M. ( 1996; ). Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. Trends Microbiol 4, 408–409.[CrossRef]
    [Google Scholar]
  12. Jeannotte, M. E., Abul-Milh, M., Dubreuil, J. D. & Jacques, M. ( 2003; ). Binding of Actinobacillus pleuropneumoniae to phosphatidylethanolamine. Infect Immun 71, 4657–4663.[CrossRef]
    [Google Scholar]
  13. Jones, M. F., Smith, T. F., Houglum, A. J. & Herrmann, J. E. ( 1984; ). Detection of Chlamydia trachomatis in genital specimens by the Chlamydiazyme test. J Clin Microbiol 20, 465–467.
    [Google Scholar]
  14. Kosma, P. ( 1999; ). Chlamydial lipopolysaccharide. Biochim Biophys Acta 1455, 387–402.[CrossRef]
    [Google Scholar]
  15. Krivan, H. C., Nilsson, B., Lingwood, C. A. & Ryu, H. ( 1991; ). Chlamydia trachomatis and Chlamydia pneumoniae bind specifically to phosphatidylethanolamine in HeLa cells and to GalNAc beta 1–4Gal beta 1–4GLC sequences-found in asialo-GM1 and asial-GM2. Biochem Biophys Res Commun 175, 1082–1089.[CrossRef]
    [Google Scholar]
  16. Kuo, C., Takahashi, N., Swanson, A. F., Ozeki, Y. & Hakomori, S. ( 1996; ). An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells. J Clin Invest 98, 2813–2818.[CrossRef]
    [Google Scholar]
  17. Morrison, D. C. & Jacobs, D. M. ( 1976; ). Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13, 813–818.[CrossRef]
    [Google Scholar]
  18. Norkin, L. C., Wolfson, S. A. & Stuart, E. S. ( 2001; ). Association of caveoli with Chlamydia trachomatis inclusions at early and late stages of infection. Exp Cell Res 266, 229–238.[CrossRef]
    [Google Scholar]
  19. Nurminen, M., Rietschel, E. T. & Brade, H. ( 1985; ). Chemical characterization of Chlamydia trachomatis lipopolysaccharide. Infect Immun 48, 573–575.
    [Google Scholar]
  20. Paradis, S. E., Dubreuil, D., Rioux, S., Gottschalk, M. & Jacques, M. ( 1994; ). High-molecular-mass lipopolysaccharides are involved in Actinobacillus pleuropneumoniae adherence to porcine respiratory tract cells. Infect Immun 62, 3311–3319.
    [Google Scholar]
  21. Paradis, S. E., Dubreuil, J. D., Gottschalk, M., Archambault, M. & Jacques, M. ( 1999; ). Inhibition of adherence of Actinobacillus pleuropneumoniae to porcine respiratory tract cells by monoclonal antibodies directed against LPS and partial characterization of the LPS receptors. Curr Microbiol 39, 313–320.[CrossRef]
    [Google Scholar]
  22. Raulston, J. E., Davis, C. H., Schmiel, D. H., Morgan, M. W. & Wyrick, P. B. ( 1993; ). Molecular characterization and outer membrane association of a Chlamydia trachomatis protein related to the hsp70 family of proteins. J Biol Chem 268, 23139–23147.
    [Google Scholar]
  23. Redecke, V., Dalhoff, K., Bohnet, S., Braun, J. & Maass, M. ( 1998; ). Interaction of Chlamydia pneumoniae and human alveolar macrophages: infection and inflammatory response. Am J Respir Cell Mol Biol 19, 721–727.[CrossRef]
    [Google Scholar]
  24. Stephens, R. S., Poteralski, J. M. & Olinger, L. ( 2006; ). Interaction of Chlamydia trachomatis with mammalian cells is independent of host cell surface heparan sulphate glycosaminoglycans. Infect Immun 74, 1795–1799.[CrossRef]
    [Google Scholar]
  25. Stuart, E. S., Webley, W. C. & Norkin, L. C. ( 2003; ). Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells. Exp Cell Res 287, 67–78.[CrossRef]
    [Google Scholar]
  26. Su, H., Watkins, N. G., Zhang, Y. X. & Caldwell, H. D. ( 1990; ). Chlamydia trachomatis–host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect Immun 58, 1017–1025.
    [Google Scholar]
  27. Taraktchoglou, M., Pacey, A. A., Turnbull, J. E. & Eley, A. ( 2001; ). Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulphate. Infect Immun 69, 968–976.[CrossRef]
    [Google Scholar]
  28. Tsubery, H., Ofek, I., Cohen, S., Eisenstein, M. & Fridkin, M. ( 2002; ). Modulation of the hydrophobic domain of polymyxin B nonapeptide: effect on outer-membrane permeabilization and lipopolysaccharide neutralization. Mol Pharmacol 62, 1036–1042.[CrossRef]
    [Google Scholar]
  29. Vora, G. J. & Stuart, E. S. ( 2003; ). A role for the glycolipid exoantigen (GLXA) in chlamydial infectivity. Curr Microbiol 46, 217–223.[CrossRef]
    [Google Scholar]
  30. Whittum-Hudson, J. A., Rudy, D., Gerard, H., Vora, G., Davis, E., Haller, P. K., Prattis, S. M., Hudson, A. P., Saltzman, W. M. & Stuart, E. S. ( 2001; ). The anti-idiotypic antibody to chlamydial glycolipid exoantigen (GLXA) protects mice against genital infection with a human biovar of Chlamydia trachomatis. Vaccine 19, 4061–4071.[CrossRef]
    [Google Scholar]
  31. Wyrick, P. B., Choong, J., Knight, S. T., Goyeau, D., Stuart, E. S. & McDonald, A. B. ( 1994; ). Chlamydia trachomatis antigens on the surface of infected human endometrial epithelial cells. Immunol Infect Dis 4, 131–141.
    [Google Scholar]
  32. Zhang, J. P. & Stephens, R. S. ( 1992; ). Mechanism of Chlamydia trachomatis attachment to eukaryotic host cells. Cell 69, 861–869.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47237-0
Loading
/content/journal/jmm/10.1099/jmm.0.47237-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error