1887

Abstract

Lipopolysaccharide (LPS) is a major surface component of , as with all Gram-negative bacteria. The effect of LPS on infectivity of human epithelial cells was investigated. LPS and LPS antibody significantly reduced infectivity, mostly in a dose-dependent manner. As the structure of LPS in is simple and consists only of lipid A and 3-deoxy--manno-octulosonic acid (Kdo), we investigated whether lipid A or Kdo was inhibitory to chlamydial infectivity. Polymyxin B, as a lipid A inhibitor, and Kdo considerably reduced infectivity. With all the LPS inhibitors used, there was greater inhibition against serovar E than serovar LGV. These results suggest a role for LPS in chlamydial infectivity. Elucidation of how LPS acts in infectivity and identification of host-cell receptors would help in understanding pathogenicity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47237-0
2008-03-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/3/261.html?itemId=/content/journal/jmm/10.1099/jmm.0.47237-0&mimeType=html&fmt=ahah

References

  1. Alfa M. J., DeGagne P. 1997; Attachment of Haemophilus ducreyi to human foreskin fibroblasts involves LOS and fibronectin. Microb Pathog 22:39–46 [CrossRef]
    [Google Scholar]
  2. Belanger M., Dubreuil D., Harel J., Girard C., Jacques M. 1990; Role of lipopolysaccharide in adherence of Actinobacillus pleuropneumoniae to porcine tracheal rings. Infect Immun 58:3523–3530
    [Google Scholar]
  3. Brade H. 1999; Chlamydial lipopolysaccharide. In Endotoxin in Health and Disease pp 229–242 Edited by Brade H., Opal S. M., Vogel S. N., Morrison D. C. New York: Marcel Dekker;
    [Google Scholar]
  4. Byrne G. I., Stephens R. S., Ada G., Caldwell H. D., Su H., Morrison R. P., Van der Pol B., Bavoil P. other authors 1993; Workshop on in vitro neutralization of Chlamydia trachomatis : summary of proceedings. J Infect Dis 168:415–420 [CrossRef]
    [Google Scholar]
  5. Campbell S., Richmond S. J., Yates P. S., Storey C. C. 1994; Lipopolysaccharide in cells infected by Chlamydia trachomatis . Microbiology 140:1995–2002 [CrossRef]
    [Google Scholar]
  6. Chernesky M., Jang D., Copes D., Patel J., Petrich A., Biers K., Sproston A., Kapala J. 2001; Comparison of a polymer conjugate-enhanced enzyme immunoassay to ligase chain reaction for diagnosis of Chlamydia trachomatis in endocervical swabs. J Clin Microbiol 39:2306–2307 [CrossRef]
    [Google Scholar]
  7. Collett B. A., Newhall W. J., Jersild R. A. Jr, Jones R. B. 1989; Detection of surface-exposed epitopes on Chlamydia trachomatis by immune electron microscopy. J Gen Microbiol 135:85–94
    [Google Scholar]
  8. Fadel S., Eley A. 2004; Chlorate: a reversible inhibitor of proteoglycan sulphation in Chlamydia trachomatis -infected cells. J Med Microbiol 53:93–95 [CrossRef]
    [Google Scholar]
  9. Harvey H. A., Porat N., Campbell C. A., Jennings M., Gibson B. W., Phillips N. J., Apicella M. A., Blake M. S. 2000; Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol Microbiol 36:1059–1070 [CrossRef]
    [Google Scholar]
  10. Heine H., Muller-Loennies S., Brade L., Lindner B., Brade H. 2003; Endotoxic activity and chemical structure of lipopolysaccharides from Chlamydia trachomatis serotypes E and L2 and Chlamydophila psittaci 6BC. Eur J Biochem 270:440–450 [CrossRef]
    [Google Scholar]
  11. Jacques M. 1996; Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. Trends Microbiol 4:408–409 [CrossRef]
    [Google Scholar]
  12. Jeannotte M. E., Abul-Milh M., Dubreuil J. D., Jacques M. 2003; Binding of Actinobacillus pleuropneumoniae to phosphatidylethanolamine. Infect Immun 71:4657–4663 [CrossRef]
    [Google Scholar]
  13. Jones M. F., Smith T. F., Houglum A. J., Herrmann J. E. 1984; Detection of Chlamydia trachomatis in genital specimens by the Chlamydiazyme test. J Clin Microbiol 20:465–467
    [Google Scholar]
  14. Kosma P. 1999; Chlamydial lipopolysaccharide. Biochim Biophys Acta 1455387–402 [CrossRef]
    [Google Scholar]
  15. Krivan H. C., Nilsson B., Lingwood C. A., Ryu H. 1991; Chlamydia trachomatis and Chlamydia pneumoniae bind specifically to phosphatidylethanolamine in HeLa cells and to GalNAc beta 1–4Gal beta 1–4GLC sequences-found in asialo-GM1 and asial-GM2. Biochem Biophys Res Commun 175:1082–1089 [CrossRef]
    [Google Scholar]
  16. Kuo C., Takahashi N., Swanson A. F., Ozeki Y., Hakomori S. 1996; An N -linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis , mediates attachment and infectivity of the microorganism to HeLa cells. J Clin Invest 98:2813–2818 [CrossRef]
    [Google Scholar]
  17. Morrison D. C., Jacobs D. M. 1976; Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13:813–818 [CrossRef]
    [Google Scholar]
  18. Norkin L. C., Wolfson S. A., Stuart E. S. 2001; Association of caveoli with Chlamydia trachomatis inclusions at early and late stages of infection. Exp Cell Res 266:229–238 [CrossRef]
    [Google Scholar]
  19. Nurminen M., Rietschel E. T., Brade H. 1985; Chemical characterization of Chlamydia trachomatis lipopolysaccharide. Infect Immun 48:573–575
    [Google Scholar]
  20. Paradis S. E., Dubreuil D., Rioux S., Gottschalk M., Jacques M. 1994; High-molecular-mass lipopolysaccharides are involved in Actinobacillus pleuropneumoniae adherence to porcine respiratory tract cells. Infect Immun 62:3311–3319
    [Google Scholar]
  21. Paradis S. E., Dubreuil J. D., Gottschalk M., Archambault M., Jacques M. 1999; Inhibition of adherence of Actinobacillus pleuropneumoniae to porcine respiratory tract cells by monoclonal antibodies directed against LPS and partial characterization of the LPS receptors. Curr Microbiol 39:313–320 [CrossRef]
    [Google Scholar]
  22. Raulston J. E., Davis C. H., Schmiel D. H., Morgan M. W., Wyrick P. B. 1993; Molecular characterization and outer membrane association of a Chlamydia trachomatis protein related to the hsp70 family of proteins. J Biol Chem 268:23139–23147
    [Google Scholar]
  23. Redecke V., Dalhoff K., Bohnet S., Braun J., Maass M. 1998; Interaction of Chlamydia pneumoniae and human alveolar macrophages: infection and inflammatory response. Am J Respir Cell Mol Biol 19:721–727 [CrossRef]
    [Google Scholar]
  24. Stephens R. S., Poteralski J. M., Olinger L. 2006; Interaction of Chlamydia trachomatis with mammalian cells is independent of host cell surface heparan sulphate glycosaminoglycans. Infect Immun 74:1795–1799 [CrossRef]
    [Google Scholar]
  25. Stuart E. S., Webley W. C., Norkin L. C. 2003; Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells. Exp Cell Res 287:67–78 [CrossRef]
    [Google Scholar]
  26. Su H., Watkins N. G., Zhang Y. X., Caldwell H. D. 1990; Chlamydia trachomatis –host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect Immun 58:1017–1025
    [Google Scholar]
  27. Taraktchoglou M., Pacey A. A., Turnbull J. E., Eley A. 2001; Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulphate. Infect Immun 69:968–976 [CrossRef]
    [Google Scholar]
  28. Tsubery H., Ofek I., Cohen S., Eisenstein M., Fridkin M. 2002; Modulation of the hydrophobic domain of polymyxin B nonapeptide: effect on outer-membrane permeabilization and lipopolysaccharide neutralization. Mol Pharmacol 62:1036–1042 [CrossRef]
    [Google Scholar]
  29. Vora G. J., Stuart E. S. 2003; A role for the glycolipid exoantigen (GLXA) in chlamydial infectivity. Curr Microbiol 46:217–223 [CrossRef]
    [Google Scholar]
  30. Whittum-Hudson J. A., Rudy D., Gerard H., Vora G., Davis E., Haller P. K., Prattis S. M., Hudson A. P., Saltzman W. M., Stuart E. S. 2001; The anti-idiotypic antibody to chlamydial glycolipid exoantigen (GLXA) protects mice against genital infection with a human biovar of Chlamydia trachomatis . Vaccine 19:4061–4071 [CrossRef]
    [Google Scholar]
  31. Wyrick P. B., Choong J., Knight S. T., Goyeau D., Stuart E. S., McDonald A. B. 1994; Chlamydia trachomatis antigens on the surface of infected human endometrial epithelial cells. Immunol Infect Dis 4:131–141
    [Google Scholar]
  32. Zhang J. P., Stephens R. S. 1992; Mechanism of Chlamydia trachomatis attachment to eukaryotic host cells. Cell 69:861–869 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47237-0
Loading
/content/journal/jmm/10.1099/jmm.0.47237-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error