1887

Abstract

Iron is an important nutritional requirement for bacteria due to its conserved role in many essential metabolic processes. As a consequence of the lack of freely available iron in the mammalian host, bacteria upregulate a range of virulence factors during infection. Transcriptional analysis of subsp. U112 grown in iron-deficient medium identified 21 genes upregulated in response to this condition, four of which were attributed to a siderophore operon. In addition, a novel iron-regulated gene, , was identified which is part of this operon and encodes a 55 kDa hypothetical membrane protein. When grown on chrome azurol S agar, the subsp. U112Δ mutant produced an increased reaction zone compared with the wild-type, suggesting that siderophore production was unaffected but that the bacteria may have a deficiency in their ability to re-sequester this iron-binding molecule. Furthermore, the Δ mutant was attenuated in a BALB/c mouse model of infection relative to wild-type subsp. U112.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47190-0
2007-10-01
2020-07-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/10/1268.html?itemId=/content/journal/jmm/10.1099/jmm.0.47190-0&mimeType=html&fmt=ahah

References

  1. Andrews S. C. 1998; Iron storage in bacteria. Adv Microb Physiol 40:281–351
    [Google Scholar]
  2. Casadevall A., Pirofski L.-A. 2004; The weapon potential of a microbe. Trends Microbiol 12:259–263 [CrossRef]
    [Google Scholar]
  3. Cendrowski S., MacArthur W., Hanna P. 2004; Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51:407–417 [CrossRef]
    [Google Scholar]
  4. Chamberlain R. E. 1965; Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol 13:232–235
    [Google Scholar]
  5. Clarke T. E., Tari L. W., Vogel H. J. 2001; Structural biology of bacterial iron uptake systems. Curr Top Med Chem 1:7–30 [CrossRef]
    [Google Scholar]
  6. Crosa J. H. 1997; Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336
    [Google Scholar]
  7. Deng K., Blick R. J., Liu W., Hansen E. J. 2006; Identification of Francisella tularensis genes affected by iron limitation. Infect Immun 74:4224–4236 [CrossRef]
    [Google Scholar]
  8. De Voss J. J., Rutter K., Schroeder B. G., Barry C. E. III: 1999; Iron acquisition and metabolism by mycobacteria. J Bacteriol 181:4443–4451
    [Google Scholar]
  9. Forsman M., Sandstrom G., Sjostedt A. 1994; Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int J Syst Bacteriol 44:38–46 [CrossRef]
    [Google Scholar]
  10. Golovliov I., Sjostedt A., Mokrievich A., Pavlov V. 2003; A method for allelic replacement in Franciella tularensis . FEMS Microbiol Lett 222:273–280 [CrossRef]
    [Google Scholar]
  11. Gurycova D. 1998; First isolation of Francisella tularensis subsp. tularensis in Europe. Eur J Epidemiol 14:797–802 [CrossRef]
    [Google Scholar]
  12. Halliwell B., Gutteridge J. M. C. 1984; Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14
    [Google Scholar]
  13. Huntley J. F., Conley P. G., Hagman K. E., Norgard M. V. 2007; Characterization of Francisella tularensis outer membrane proteins. J Bacteriol 189:561–574 [CrossRef]
    [Google Scholar]
  14. Johansson A., Ibrahim A., Goransson I., Eriksson U., Gurycova D., Clarridge J. E., Sjostedt A. 2000; Evaluation of PCR-based methods for discrimination of Francisella species and subspecies and development of a specific PCR that distinguishes the two major subspecies of Francisella tularensis . J Clin Microbiol 38:4180–4185
    [Google Scholar]
  15. Litwin C. M., Calderwood S. B. 1993; Role of iron in regulation of virulence genes. Clin Microbiol Rev 6:137–149
    [Google Scholar]
  16. Machuca A., Milagres A. M. F. 2003; Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus . Lett Appl Microbiol 36:177–181 [CrossRef]
    [Google Scholar]
  17. Pelicic V., Reyrat J.-M., Gicquel B. 1996; Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178:1197–1199
    [Google Scholar]
  18. Petersen J. M., Schriefer M. E. 2005; Tularemia: emergence/re-emergence. Vet Res 36:455–467 [CrossRef]
    [Google Scholar]
  19. Rabsch W., Methner U., Voight W., Tschape H., Reissbrodt R., Williams P. H. 2003; Role of receptor proteins for enterobactin and 2,3-dihydroxybenzoylserine in virulence of Salmonella enterica . Infect Immun 71:6953–6961 [CrossRef]
    [Google Scholar]
  20. Ratledge C., Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [CrossRef]
    [Google Scholar]
  21. Reed L. J., Muench H. 1938; A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497
    [Google Scholar]
  22. Register K. B., Ducey T. F., Brockmeier S. L., Dyer D. W. 2001; Reduced virulence of a Bordetella bronchiseptica siderophore mutant in neonatal swine. Infect Immun 69:2137–2143 [CrossRef]
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [CrossRef]
    [Google Scholar]
  25. Stewart G. R., Wernisch L., Stabler R., Mangan J. A., Hinds J., Laing K. G., Young D. B., Butcher P. D. 2002; Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:3129–3138
    [Google Scholar]
  26. Sullivan J. T., Jeffery E. F., Shannon J. D., Ramakrishnan G. 2006; Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. J Bacteriol 188:3785–3795 [CrossRef]
    [Google Scholar]
  27. Thomas R. M., Titball R. W., Oyston P. C., Griffin K., Waters E., Hitchen P. G., Michell S. L., Grice I. D., Wilson J. C. other authors 2007; The immunologically distinct O antigens from Francisella tularensis subspecies tularensis and Francisella novicida are both virulence determinants and protective antigens. Infect Immun 75:371–378 [CrossRef]
    [Google Scholar]
  28. Whipp M. J., Davis J. M., Lum G., de Boer J., Zhou Y., Bearden S. W., Petersen J. M., Chu M. C., Hogg G. 2003; Characterization of a novicida -like subspecies of Francisella tularensis isolated in Australia. J Med Microbiol 52:839–842 [CrossRef]
    [Google Scholar]
  29. Williams P. H., Rabsch W., Methner U., Voigt W., Tschape H., Reissbrodt R. 2006; Catecholate receptor proteins in Salmonella enterica : role in virulence and implications for vaccine development. Vaccine 24:3840–3844 [CrossRef]
    [Google Scholar]
  30. Wooldridge K. G., Williams P. H. 1993; Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12:325–348 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47190-0
Loading
/content/journal/jmm/10.1099/jmm.0.47190-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error