1887

Abstract

Iron is an important nutritional requirement for bacteria due to its conserved role in many essential metabolic processes. As a consequence of the lack of freely available iron in the mammalian host, bacteria upregulate a range of virulence factors during infection. Transcriptional analysis of subsp. U112 grown in iron-deficient medium identified 21 genes upregulated in response to this condition, four of which were attributed to a siderophore operon. In addition, a novel iron-regulated gene, , was identified which is part of this operon and encodes a 55 kDa hypothetical membrane protein. When grown on chrome azurol S agar, the subsp. U112Δ mutant produced an increased reaction zone compared with the wild-type, suggesting that siderophore production was unaffected but that the bacteria may have a deficiency in their ability to re-sequester this iron-binding molecule. Furthermore, the Δ mutant was attenuated in a BALB/c mouse model of infection relative to wild-type subsp. U112.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47190-0
2007-10-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/10/1268.html?itemId=/content/journal/jmm/10.1099/jmm.0.47190-0&mimeType=html&fmt=ahah

References

  1. Andrews, S. C. ( 1998; ). Iron storage in bacteria. Adv Microb Physiol 40, 281–351.
    [Google Scholar]
  2. Casadevall, A. & Pirofski, L.-A. ( 2004; ). The weapon potential of a microbe. Trends Microbiol 12, 259–263.[CrossRef]
    [Google Scholar]
  3. Cendrowski, S., MacArthur, W. & Hanna, P. ( 2004; ). Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51, 407–417.[CrossRef]
    [Google Scholar]
  4. Chamberlain, R. E. ( 1965; ). Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol 13, 232–235.
    [Google Scholar]
  5. Clarke, T. E., Tari, L. W. & Vogel, H. J. ( 2001; ). Structural biology of bacterial iron uptake systems. Curr Top Med Chem 1, 7–30.[CrossRef]
    [Google Scholar]
  6. Crosa, J. H. ( 1997; ). Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61, 319–336.
    [Google Scholar]
  7. Deng, K., Blick, R. J., Liu, W. & Hansen, E. J. ( 2006; ). Identification of Francisella tularensis genes affected by iron limitation. Infect Immun 74, 4224–4236.[CrossRef]
    [Google Scholar]
  8. De Voss, J. J., Rutter, K., Schroeder, B. G. & Barry, C. E., III ( 1999; ). Iron acquisition and metabolism by mycobacteria. J Bacteriol 181, 4443–4451.
    [Google Scholar]
  9. Forsman, M., Sandstrom, G. & Sjostedt, A. ( 1994; ). Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int J Syst Bacteriol 44, 38–46.[CrossRef]
    [Google Scholar]
  10. Golovliov, I., Sjostedt, A., Mokrievich, A. & Pavlov, V. ( 2003; ). A method for allelic replacement in Franciella tularensis. FEMS Microbiol Lett 222, 273–280.[CrossRef]
    [Google Scholar]
  11. Gurycova, D. ( 1998; ). First isolation of Francisella tularensis subsp. tularensis in Europe. Eur J Epidemiol 14, 797–802.[CrossRef]
    [Google Scholar]
  12. Halliwell, B. & Gutteridge, J. M. C. ( 1984; ). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219, 1–14.
    [Google Scholar]
  13. Huntley, J. F., Conley, P. G., Hagman, K. E. & Norgard, M. V. ( 2007; ). Characterization of Francisella tularensis outer membrane proteins. J Bacteriol 189, 561–574.[CrossRef]
    [Google Scholar]
  14. Johansson, A., Ibrahim, A., Goransson, I., Eriksson, U., Gurycova, D., Clarridge, J. E. & Sjostedt, A. ( 2000; ). Evaluation of PCR-based methods for discrimination of Francisella species and subspecies and development of a specific PCR that distinguishes the two major subspecies of Francisella tularensis. J Clin Microbiol 38, 4180–4185.
    [Google Scholar]
  15. Litwin, C. M. & Calderwood, S. B. ( 1993; ). Role of iron in regulation of virulence genes. Clin Microbiol Rev 6, 137–149.
    [Google Scholar]
  16. Machuca, A. & Milagres, A. M. F. ( 2003; ). Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Lett Appl Microbiol 36, 177–181.[CrossRef]
    [Google Scholar]
  17. Pelicic, V., Reyrat, J.-M. & Gicquel, B. ( 1996; ). Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178, 1197–1199.
    [Google Scholar]
  18. Petersen, J. M. & Schriefer, M. E. ( 2005; ). Tularemia: emergence/re-emergence. Vet Res 36, 455–467.[CrossRef]
    [Google Scholar]
  19. Rabsch, W., Methner, U., Voight, W., Tschape, H., Reissbrodt, R. & Williams, P. H. ( 2003; ). Role of receptor proteins for enterobactin and 2,3-dihydroxybenzoylserine in virulence of Salmonella enterica. Infect Immun 71, 6953–6961.[CrossRef]
    [Google Scholar]
  20. Ratledge, C. & Dover, L. G. ( 2000; ). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54, 881–941.[CrossRef]
    [Google Scholar]
  21. Reed, L. J. & Muench, H. ( 1938; ). A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27, 493–497.
    [Google Scholar]
  22. Register, K. B., Ducey, T. F., Brockmeier, S. L. & Dyer, D. W. ( 2001; ). Reduced virulence of a Bordetella bronchiseptica siderophore mutant in neonatal swine. Infect Immun 69, 2137–2143.[CrossRef]
    [Google Scholar]
  23. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Schwyn, B. & Neilands, J. B. ( 1987; ). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47–56.[CrossRef]
    [Google Scholar]
  25. Stewart, G. R., Wernisch, L., Stabler, R., Mangan, J. A., Hinds, J., Laing, K. G., Young, D. B. & Butcher, P. D. ( 2002; ). Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148, 3129–3138.
    [Google Scholar]
  26. Sullivan, J. T., Jeffery, E. F., Shannon, J. D. & Ramakrishnan, G. ( 2006; ). Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. J Bacteriol 188, 3785–3795.[CrossRef]
    [Google Scholar]
  27. Thomas, R. M., Titball, R. W., Oyston, P. C., Griffin, K., Waters, E., Hitchen, P. G., Michell, S. L., Grice, I. D., Wilson, J. C. & other authors ( 2007; ). The immunologically distinct O antigens from Francisella tularensis subspecies tularensis and Francisella novicida are both virulence determinants and protective antigens. Infect Immun 75, 371–378.[CrossRef]
    [Google Scholar]
  28. Whipp, M. J., Davis, J. M., Lum, G., de Boer, J., Zhou, Y., Bearden, S. W., Petersen, J. M., Chu, M. C. & Hogg, G. ( 2003; ). Characterization of a novicida-like subspecies of Francisella tularensis isolated in Australia. J Med Microbiol 52, 839–842.[CrossRef]
    [Google Scholar]
  29. Williams, P. H., Rabsch, W., Methner, U., Voigt, W., Tschape, H. & Reissbrodt, R. ( 2006; ). Catecholate receptor proteins in Salmonella enterica: role in virulence and implications for vaccine development. Vaccine 24, 3840–3844.[CrossRef]
    [Google Scholar]
  30. Wooldridge, K. G. & Williams, P. H. ( 1993; ). Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12, 325–348.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47190-0
Loading
/content/journal/jmm/10.1099/jmm.0.47190-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error