1887

Abstract

isolates (=149) collected in south-east Scotland between August and October 2005 were typed by four different methods and their susceptibility to seven different antibiotics was determined. The aims were to define the types of strain occurring in this region and to determine whether there were any clonal relationships among them with respect to genotype and antibiotic resistance pattern. Ribotyping revealed that 001 was the most common type (=113, 75.8 %), followed by ribotype 106 (12 isolates, 8.1 %). The majority of the isolates (96.6 %, =144) were of toxinotype 0, with two toxinotype V isolates and single isolates of toxinotypes I, IV and XIII. PCR and restriction analysis of the gene from 147 isolates gave two restriction patterns: 145 of pattern VII and two of pattern I. Binary toxin genes were detected in only three isolates: two isolates of ribotype 126, toxinotype V, and one isolate of ribotype 023, toxinotype IV. S-types showed more variation, with 64.5 % (=40) of the common S-type (4939) and 21 % (=13) of S-type 4741, with six other S-types (one to three isolates each). All ribotype 001 isolates were of the same S-type (4939), with three isolates of other ribotypes being this S-type. No resistance was found to metronidazole or vancomycin, with resistance to tetracycline only found in 4.3 % of the isolates. A high proportion of isolates were resistant to clindamycin (62.9 %), moxifloxacin, ceftriaxone (both 87.1 %) and erythromycin (94.8 %). Resistance to three antibiotics (erythromycin, clindamycin and ceftriaxone) was seen in 66 isolates, with erythromycin, ceftriaxone and moxifloxacin resistance seen in 96 isolates. Resistance to all four of these antibiotics was found in 62 isolates and resistance to five (the above plus tetracycline) in one isolate: a ribotype 001, toxinotype 0 strain. Whilst ribotype 001 was the most commonly encountered type, there was no evidence of clonal relationships when all other typing and antibiotic resistance patterns were taken into account.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47176-0
2007-07-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/7/921.html?itemId=/content/journal/jmm/10.1099/jmm.0.47176-0&mimeType=html&fmt=ahah

References

  1. Ackermann, G., Tang, Y. J., Kueper, R., Heisig, P., Rodloff, A. C., Silva, J. & Cohen, S. H. ( 2001; ). Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyrA. Antimicrob Agents Chemother 45, 2348–2353.[CrossRef]
    [Google Scholar]
  2. Ackermann, G., Degner, A., Cohen, S. H., Silva, J. & Rodloff, A. C. ( 2003; ). Prevalence and association of macrolide-lincosamide-streptogramin B (MLSB) resistance with resistance to moxifloxacin in Clostridium difficile. J Antimicrob Chemother 51, 599–603.[CrossRef]
    [Google Scholar]
  3. Alonso, R., Martín, A., Peláez, T., Marín, M., Rodríguez-Creixéms, M. & Bouza, E. ( 2005; ). Toxigenic status of Clostridium difficile in a large Spanish teaching hospital. J Med Microbiol 54, 159–162.[CrossRef]
    [Google Scholar]
  4. Aspevall, O., Lundberg, A., Burman, L. G., Akerlund, T. & Svenungsson, B. ( 2006; ). Antimicrobial susceptibility pattern of Clostridium difficile and its relation to PCR ribotypes in a Swedish University hospital. Antimicrob Agents Chemother 50, 1890–1892.[CrossRef]
    [Google Scholar]
  5. Barbut, F., Decré, D., Lalande, V., Burghoffer, B., Noussair, L., Gigandon, A., Espinasse, F., Raskine, L., Robert, J. & other authors ( 2005; ). Clinical features of Clostridium difficile-associated diarrhoea due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. J Med Microbiol 54, 181–185.[CrossRef]
    [Google Scholar]
  6. Bidet, P., Lalande, V., Salauze, B., Burghoffer, B., Avesani, V., Delmée, M., Rossier, A., Barbut, F. & Petit, J. C. ( 2000; ). Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile. J Clin Microbiol 38, 2484–2487.
    [Google Scholar]
  7. Brazier, J. S. ( 2001; ). Typing of Clostridium difficile. Clin Microbiol Infect 7, 428–431.[CrossRef]
    [Google Scholar]
  8. Brazier, J. S., Fawley, W., Freeman, J. & Wilcox, M. H. ( 2001; ). Reduced susceptibility of Clostridium difficile to metronidazole. J Antimicrob Chemother 48, 741–742.[CrossRef]
    [Google Scholar]
  9. Brown, R., Collee, J. G. & Poxton, I. R. ( 1996; ). Bacteroides, Fusobacterium and other Gram-negative anaerobic rods; anaerobic cocci; identification of anaerobes. In Mackie and McCartney's Practical Medical Microbiology, pp. 501–519. Edited by J. G. Collee, A. G. Fraser, B. P. Marmion & A. Simmonds. Edinburgh: Churchill Livingstone.
  10. Collier, M. C., Stock, F., Degirolami, P. C., Samore, M. H. & Cartwright, C. P. ( 1996; ). Comparison of PCR-based approaches to molecular epidemiologic analysis of Clostridium difficile. J Clin Microbiol 34, 1153–1157.
    [Google Scholar]
  11. Drummond, L. J., McCoubrey, J., Smith, D. G., Starr, J. M. & Poxton, I. R. ( 2003; ). Changes in sensitivity patterns to selected antibiotics in Clostridium difficile in geriatric in-patients over an 18-month period. J Med Microbiol 52, 259–263.[CrossRef]
    [Google Scholar]
  12. Farrow, K. A., Lyras, D. & Rood, J. I. ( 2001; ). Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. Microbiology 147, 2717–2728.
    [Google Scholar]
  13. Geric, B., Johnson, S., Gerding, D. N., Grabnar, M. & Rupnik, M. ( 2003; ). Frequency of binary toxin genes among Clostridium difficile strains that do not produce large clostridial toxins. J Clin Microbiol 41, 5227–5232.[CrossRef]
    [Google Scholar]
  14. Geric, B., Rupnik, M., Gerding, D. N., Grabnar, M. & Johnson, S. ( 2004; ). Distribution of Clostridium difficile variant toxinotypes and strains with binary toxin genes among clinical isolates in an American hospital. J Med Microbiol 53, 887–894.[CrossRef]
    [Google Scholar]
  15. Health Protection Agency ( 2006; ). Clostridium difficile: findings and recommendations from a review of the epidemiology and a survey of Directors of Infection Prevention and Control in England. http://www.hpa.org.uk/infections/topics_az/clostridium_difficile/documents/Clostridium_difficile_survey_findings_recommendations.pdf.
  16. Hoogkamp-Korstanje, J. A. A. & Roelofs-Willemse, J. ( 2000; ). Comparative in vitro activity of moxifloxacin against Gram-positive clinical isolates. J Antimicrob Chemother 45, 31–39.
    [Google Scholar]
  17. Hubert, B., Loo, V. G., Bourgault, A. M., Poirier, L., Dascal, A., Fortin, E., Dionne, M. & Lorange, M. ( 2007; ). A portrait of the geographic dissemination of the Clostridium difficile North American Pulsed-Field Type 1 strain and the epidemiology of C. difficile-associated disease in Quebec. Clin Infect Dis 44, 238–244.[CrossRef]
    [Google Scholar]
  18. John, R. & Brazier, J. S. ( 2005; ). Antimicrobial susceptibility of polymerase chain reaction ribotypes of Clostridium difficile commonly isolated from symptomatic hospital patients in the UK. J Hosp Infect 61, 11–14.[CrossRef]
    [Google Scholar]
  19. Johnson, S. & Gerding, D. N. ( 1998; ). Clostridium difficile-associated diarrhea. Clin Infect Dis 26, 1027–1034.[CrossRef]
    [Google Scholar]
  20. Johnson, S., Sambol, S. P., Brazier, J. S., Delmee, M., Avesani, V., Merrigan, M. M. & Gerding, D. N. ( 2003; ). International typing study of toxin A-negative, toxin B-positive Clostridium difficile variants. J Clin Microbiol 41, 1543–1547.[CrossRef]
    [Google Scholar]
  21. Kelly, C. P. & LaMont, J. T. ( 1998; ). Clostridium difficile infection. Annu Rev Med 49, 375–390.[CrossRef]
    [Google Scholar]
  22. Kuijper, E. J., Coignard, B. & Tull, P. ( 2006a; ). Emergence of Clostridium difficile-associated disease in North America and Europe. The ESCMID Study Group for Clostridium difficile and EU Member States and the European Centre for Disease Prevention and Control. Clin Microbiol Infect 12 (Suppl. 6), 2–18.
    [Google Scholar]
  23. Kuijper, E. J., van den Berg, R. J., Debast, S., Visser, C. E., Veenendaal, D., Troelstra, A., van der Kooi, T., van den Hof, S. & Notermans, D. W. ( 2006b; ). Clostridium difficile ribotype 027, toxinotype III, the Netherlands. Emerg Infect Dis 12, 827–830.[CrossRef]
    [Google Scholar]
  24. Leroi, M. J., Siarakas, S. & Gottlieb, T. ( 2002; ). Etest susceptibility testing of nosocomial Clostridium difficile isolates against metronidazole, vancomycin, fusidic acid and novel agents moxifloxacin, gatifloxacin and linezolid. Eur J Clin Microbiol Infect Dis 21, 72–74.[CrossRef]
    [Google Scholar]
  25. Martirosian, G., Kuipers, S., Verburgh, H., van Belkum, A. & Meisel-Mikolajezik, F. ( 1995; ). PCR ribotyping and arbitrarily primed PCR for typing strains of Clostridium difficile from a Polish maternity hospital. J Clin Microbiol 33, 2016–2021.
    [Google Scholar]
  26. McCoubrey, J. ( 2002; ). The epidemiology of Clostridium difficile in a geriatric unit. PhD thesis, Univiversity of Edinburgh, UK.
  27. McCoubrey, J., Starr, J. M., Martin, H. J. & Poxton, I. R. ( 2003; ). Clostridium difficile in a geriatric unit: prospective epidemiological study employing a novel S-layer typing method. J Med Microbiol 52, 573–578.[CrossRef]
    [Google Scholar]
  28. McDonald, L. C., Killgore, G. E., Thompson, A., Owens, R. C., Kazakova, S. V., Sambol, S. P., Johnson, S. & Gerding, D. N. ( 2005; ). An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353, 2433–2441.[CrossRef]
    [Google Scholar]
  29. NCCLS ( 2001; ). Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 5th edn. Approved standard M11-A5. Wayne, PA: National Committee for Clinical Laboratory Standards.
  30. O'Neill, G. L., Ogunsola, F. T., Brazier, J. S. & Duerden, B. I. ( 1996; ). Modification of a PCR ribotyping method for application as a routine typing scheme for Clostridium difficile. Anaerobe 2, 205–209.[CrossRef]
    [Google Scholar]
  31. Peláez, T., Alcala, L., Alonso, R., Martín-Lopez, A., Garcia-Arias, V., Marín, M. & Bouza, E. ( 2005; ). In vitro activity of ramoplanin against Clostridium difficile, including strains with reduced susceptibility to vancomycin or with resistance to metronidazole. Antimicrob Agents Chemother 49, 1157–1159.[CrossRef]
    [Google Scholar]
  32. Pituch, H., Rupnik, M., Obuch-Woszczatyński, P., Grubesic, A., Meisel-Mikołajczyk, F. & Łuczak, M. ( 2005; ). Detection of binary-toxin genes (cdtA and cdtB) among Clostridium difficile strains isolated from patients with C. difficile-associated diarrhoea (CDAD) in Poland. J Med Microbiol 54, 143–147.[CrossRef]
    [Google Scholar]
  33. Pituch, H., Brazier, J. S., Obuch-Woszczatyński, P., Wultańska, D., Meisel-Mikołajczyk, F. & Łuczak, M. ( 2006; ). Prevalence and association of PCR ribotypes of Clostridium difficile isolated from symptomatic patients from Warsaw with macrolide-lincosamide-streptogramin B (MLSB) type resistance. J Med Microbiol 55, 207–213.[CrossRef]
    [Google Scholar]
  34. Rotimi, V. O., Jamal, W. Y., Mokaddas, E. M., Brazier, J. S., Johny, M. & Duerden, B. I. ( 2003; ). Prevalent PCR ribotypes of clinical and environmental strains of Clostridium difficile isolated from intensive-therapy unit patients in Kuwait. J Med Microbiol 52, 705–709.[CrossRef]
    [Google Scholar]
  35. Rupnik, M. ( 2001; ). How to detect Clostridium difficile variant strains in a routine laboratory. Clin Microbiol Infect 7, 417–420.[CrossRef]
    [Google Scholar]
  36. Rupnik, M., Braun, V., Soehn, F., Janc, M., Hofstetter, M., Laufenberg-Feldmann, R. & von Eichel-Streiber, C. ( 1997; ). Characterization of polymorphisms in the toxin A and B genes of Clostridium difficile. FEMS Microbiol Lett 148, 197–202.[CrossRef]
    [Google Scholar]
  37. Rupnik, M., Avesani, V., Janc, M., von Eichel-Streiber, C. & Delmée, M. ( 1998; ). A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J Clin Microbiol 36, 2240–2247.
    [Google Scholar]
  38. Rupnik, M., Brazier, J. S., Duerden, B. I., Grabnar, M. & Stubbs, S. L. ( 2001; ). Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes. Microbiology 147, 439–447.
    [Google Scholar]
  39. Rupnik, M., Kato, N., Grabnar, M. & Kato, H. ( 2003a; ). New types of toxin A-negative, toxin B-positive strains among Clostridium difficile isolates from Asia. J Clin Microbiol 41, 1118–1125.[CrossRef]
    [Google Scholar]
  40. Rupnik, M., Grabnar, M. & Geric, B. ( 2003b; ). Binary toxin producing Clostridium difficile strains. Anaerobe 9, 289–294.[CrossRef]
    [Google Scholar]
  41. Spigaglia, P. & Mastrantonio, P. ( 2002; ). Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40, 3470–3475.[CrossRef]
    [Google Scholar]
  42. Spigaglia, P. & Mastrantonio, P. ( 2004; ). Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J Med Microbiol 53, 1129–1136.[CrossRef]
    [Google Scholar]
  43. Stubbs, S. L. J., Brazier, J. S., O'Neill, G. L. & Duerden, B. I. ( 1999; ). PCR targeted to the 16S–23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37, 461–463.
    [Google Scholar]
  44. Stubbs, S., Rupnik, M., Gibert, M., Brazier, J., Duerden, B. & Popoff, M. ( 2000; ). Production of an actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile.. FEMS Microbiol Lett 186, 307–312.[CrossRef]
    [Google Scholar]
  45. Tasteyre, A., Karjalainen, T., Avesani, V., Delmee, M., Collignon, A., Bourlioux, P. & Barc, M. C. ( 2000; ). Phenotypic and genotypic diversity of the flagellin gene (fliC) among Clostridium difficile isolates from different serogroups. J Clin Microbiol 38, 3179–3186.
    [Google Scholar]
  46. Urban, E., Brazier, J. S., Soki, J., Nagy, E. & Duerden, B. ( 2001; ). PCR ribotyping of clinically important Clostridium difficile strains from Hungary. J Med Microbiol 50, 1082–1086.
    [Google Scholar]
  47. Wilcox, M. H., Fawley, W., Freeman, J. & Brayson, J. ( 2000; ). In vitro activity of new generation fluoroquinolones against genotypically distinct and indistinguishable Clostridium difficile isolates. J Antimicrob Chemother 46, 551–555.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47176-0
Loading
/content/journal/jmm/10.1099/jmm.0.47176-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error