1887

Abstract

is known as a primary pathogen of dental caries, one of the most common human infectious diseases. Exopolysaccharide synthesis, adherence to tooth surface and biofilm formation are important physiological and virulence factors of . comparative gene expression analysis was carried out to differentiate 10 selected genes known to be mostly involved in biofilm formation by comparing the expression under biofilm and planktonic environments. Real-time RT-PCR analyses indicated that all of the genes tested were upregulated in the biofilm compared to cells grown in planktonic conditions. The influence of simple dietary carbohydrates on gene expression in biofilm was tested also. Among the tested genes, in the biofilm phase, the greatest induction was observed for and , which are genes encoding the extracellular polysaccharide-producing enzymes. Biofilm formation was accompanied by a 22-fold induction in the abundance of mRNA encoding glucosyltransferase B (GTFB) and a 14.8 -fold increase in mRNA encoding GTFC. Levels of mRNA encoding fructosyltransferase were induced approximately 11.8-fold in biofilm-derived cells. Another notable finding of this study suggests that glucose affects the expression of GS5 biofilm genes. In spite of a significant upregulation in biofilm-associated gene expression in the presence of sucrose, the presence of glucose with sucrose reduced expression of most tested genes. Differential analysis of the transcripts from , grown in media with various nutrient contents, revealed significant shifts in the expression of the genes involved in biofilm formation. The results presented here provide new insights at the molecular level regarding gene expression in this bacterium when grown under biofilm conditions, allowing a better understanding of the mechanism of biofilm formation by

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47146-0
2007-11-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/11/1528.html?itemId=/content/journal/jmm/10.1099/jmm.0.47146-0&mimeType=html&fmt=ahah

References

  1. Banas, J. A. & Vickerman, M. M. ( 2003; ). Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med 14, 89–99.[CrossRef]
    [Google Scholar]
  2. Bowden, G. H. & Hamilton, I. R. ( 1998; ). Survival of oral bacteria. Crit Rev Oral Biol Med 9, 54–85.[CrossRef]
    [Google Scholar]
  3. Brown, T. A., Jr, Ahn, S. J., Frank, R. N., Chen, Y. Y., Lemos, J. A. & Burne, R. A. ( 2005; ). A hypothetical protein of Streptococcus mutans is critical for biofilm formation. Infect Immun 73, 3147–3151.[CrossRef]
    [Google Scholar]
  4. Burne, R. A., Chen, Y. Y., Wexler, D. L., Kuramitsu, H. & Bowen, W. H. ( 1996; ). Cariogenicity of Streptococcus mutans strains with defects in fructan metabolism assessed in a program-fed specific-pathogen-free rat model. J Dent Res 75, 1572–1577.[CrossRef]
    [Google Scholar]
  5. Burne, R. A., Chen, Y. Y. & Penders, J. E. ( 1997; ). Analysis of gene expression in Streptococcus mutans in biofilms in vitro. Adv Dent Res 11, 100–109.[CrossRef]
    [Google Scholar]
  6. Carlson, J. ( 2000; ). Growth and nutrition as ecological factors. In Oral Bacterial Ecology: the Molecular Basis, pp. 67–130. Edited by H. K. Kuramitsu & R. P. Ellen. Wymondham: Horizon Scientific Press.
  7. Chatfield, C. H., Koo, H. & Quivey, R. G., Jr ( 2005; ). The putative autolysin regulator LytR in Streptococcus mutans plays a role in cell division and is growth-phase regulated. Microbiology 151, 625–631.[CrossRef]
    [Google Scholar]
  8. Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M. & Marrie, T. J. ( 1987; ). Bacterial biofilms in nature and disease. Annu Rev Microbiol 41, 435–464.[CrossRef]
    [Google Scholar]
  9. Fujiwara, T., Hoshino, T., Ooshima, T. & Hamada, S. ( 2002; ). Differential and quantitative analyses of mRNA expression of glucosyltransferases from Streptococcus mutans MT8148. J Dent Res 81, 109–113.[CrossRef]
    [Google Scholar]
  10. Gilmore, K. S., Srinivas, P., Akins, D. R., Hatter, K. L. & Gilmore, M. S. ( 2003; ). Growth, development, and gene expression in a persistent Streptococcus gordonii biofilm. Infect Immun 71, 4759–4766.[CrossRef]
    [Google Scholar]
  11. Goodman, S. D. & Gao, Q. ( 2000; ). Characterization of the gtfB and gtfC promoters from Streptococcus mutans GS-5. Plasmid 43, 85–98.[CrossRef]
    [Google Scholar]
  12. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. ( 2004; ). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95–108.[CrossRef]
    [Google Scholar]
  13. Hanada, N. & Kuramitsu, H. K. ( 1988; ). Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect Immun 56, 1999–2005.
    [Google Scholar]
  14. Hudson, M. C. & Curtiss, R., III ( 1990; ). Regulation of expression of Streptococcus mutans genes important to virulence. Infect Immun 58, 464–470.
    [Google Scholar]
  15. Jakubovics, N. S., Stromberg, N., van Dolleweerd, C. J., Kelly, C. G. & Jenkinson, H. F. ( 2005; ). Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol Microbiol 55, 1591–1605.[CrossRef]
    [Google Scholar]
  16. Kiska, D. L. & Macrina, F. L. ( 1994; ). Genetic regulation of fructosyltransferase in Streptococcus mutans. Infect Immun 62, 1241–1251.
    [Google Scholar]
  17. Kuramitsu, H. K. ( 1993; ). Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med 4, 159–176.
    [Google Scholar]
  18. Kuramitsu, H. K. ( 2001; ). Virulence properties of oral bacteria: impact of molecular biology. Curr Issues Mol Biol 3, 35–36.
    [Google Scholar]
  19. Lee, S. F., Progulske-Fox, A., Erdos, G. W., Piacentini, D. A., Ayakawa, G. Y., Crowley, P. J. & Bleiweis, A. S. ( 1989; ). Construction and characterization of isogenic mutants of Streptococcus mutans deficient in major surface protein antigen P1 (I/II). Infect Immun 57, 3306–3313.
    [Google Scholar]
  20. Lee, S. F., Delaney, G. D. & Elkhateeb, M. ( 2004; ). A two-component covRS regulatory system regulates expression of fructosyltransferase and a novel extracellular carbohydrate in Streptococcus mutans. Infect Immun 72, 3968–3973.[CrossRef]
    [Google Scholar]
  21. Lemos, J. A. & Burne, R. A. ( 2002; ). Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans. J Bacteriol 184, 6357–6366.[CrossRef]
    [Google Scholar]
  22. Lemos, J. A., Brown, T. A., Jr & Burne, R. A. ( 2004; ). Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans. Infect Immun 72, 1431–1440.[CrossRef]
    [Google Scholar]
  23. Li, Y. & Burne, R. A. ( 2001; ). Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate. Microbiology 147, 2841–2848.
    [Google Scholar]
  24. Li, Y. H., Tang, N., Aspiras, M. B., Lau, P. C., Lee, J. H., Ellen, R. P. & Cvitkovitch, D. G. ( 2002; ). A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184, 2699–2708.[CrossRef]
    [Google Scholar]
  25. Marsh, P. D. ( 2005; ). Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32 (Suppl. 6), 7–15.[CrossRef]
    [Google Scholar]
  26. Munro, C., Michalek, S. M. & Macrina, F. L. ( 1991; ). Cariogenicity of Streptococcus mutans V403 glucosyltransferase and fructosyltransferase mutants constructed by allelic exchange. Infect Immun 59, 2316–2323.
    [Google Scholar]
  27. Murakami, Y., Nakano, Y., Yamashita, Y. & Koga, T. ( 1997; ). Identification of a frameshift mutation resulting in premature termination and loss of cell wall anchoring of the PAc antigen of Streptococcus mutans GS-5. Infect Immun 65, 794–797.
    [Google Scholar]
  28. Nakano, Y. J. & Kuramitsu, H. K. ( 1992; ). Mechanism of Streptococcus mutans glucosyltransferases: hybrid-enzyme analysis. J Bacteriol 174, 5639–5646.
    [Google Scholar]
  29. O'Toole, G., Kaplan, H. B. & Kolter, R. ( 2000; ). Biofilm formation as microbial development. Annu Rev Microbiol 54, 49–79.[CrossRef]
    [Google Scholar]
  30. Sato, Y., Okamoto, K. & Kizaki, H. ( 2002; ). gbpC and pac gene mutations detected in Streptococcus mutans strain GS-5. Oral Microbiol Immunol 17, 263–266.[CrossRef]
    [Google Scholar]
  31. Senadheera, M. D., Guggenheim, B., Spatafora, G. A., Huang, Y. C., Choi, J., Hung, D. C., Treglown, J. S., Goodman, S. D., Ellen, R. P. & Cvitkovitch, D. G. ( 2005; ). A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187, 4064–4076.[CrossRef]
    [Google Scholar]
  32. Shemesh, M. & Steinberg, D. ( 2006; ). In vitro binding interactions of oral bacteria with immobilized fructosyltransferase. J Appl Microbiol 100, 871–877.[CrossRef]
    [Google Scholar]
  33. Shemesh, M., Tam, A., Feldman, M. & Steinberg, D. ( 2006; ). Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydr Res 341, 2090–2097.[CrossRef]
    [Google Scholar]
  34. Shemesh, M., Tam, A. & Steinberg, D. ( 2007; ). Differential gene expression profiling of Streptococcus mutans cultured under biofilm and planktonic conditions. Microbiology 153, 1307–1317.[CrossRef]
    [Google Scholar]
  35. Steinberg, D. ( 2000; ). Studying plaque biofilms on various dental surfaces. In Handbook of Bacterial Adhesion: Principles, Methods, and Applications, pp. 353–370. Edited by Y. H. An & R. J. Friedman. Totowa, NJ: Humana Press.
  36. Tam, A., Shemesh, M., Wormser, U., Sintov, A. & Steinberg, D. ( 2006; ). Effect of different iodine formulations on the expression and activity of Streptococcus mutans glucosyltransferase and fructosyltransferase in biofilm and planktonic environments. J Antimicrob Chemother 57, 865–871.[CrossRef]
    [Google Scholar]
  37. Wen, Z. T. & Burne, R. A. ( 2002; ). Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol 68, 1196–1203.[CrossRef]
    [Google Scholar]
  38. Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S. & Greenberg, E. P. ( 2001; ). Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.[CrossRef]
    [Google Scholar]
  39. Yoshida, A. & Kuramitsu, H. K. ( 2002; ). Multiple Streptococcus mutans genes are involved in biofilm formation. Appl Environ Microbiol 68, 6283–6291.[CrossRef]
    [Google Scholar]
  40. Zhu, L., Kreth, J., Cross, S. E., Gimzewski, J. K., Shi, W. & Qi, F. ( 2006; ). Functional characterization of cell-wall-associated protein WapA in Streptococcus mutans. Microbiology 152, 2395–2404.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47146-0
Loading
/content/journal/jmm/10.1099/jmm.0.47146-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 1528 - 1535

Depth analysis of live/dead stained biofilms. GS5 were grown in different media, stained with LIVE/DEAD Light fluorescent dye and analysed with CLSM. The reconstruction of cross-section images of generated biofilms is shown for: (a) unsupplemented TY, (b) TY supplemented with 10 g sucrose l , (c) TY supplemented with 40 g sucrose l , (d) TY supplemented with 2 g glucose l , (e) TY supplemented with 10 g sucrose l and 2 g glucose l , (f) TY supplemented with 40 g sucrose l and 2 g glucose l , (g) unsupplemented BHI, (h) BHI supplemented with 10 g sucrose l , (i) BHI supplemented with 10 g sucrose l . Dead cells were stained red, while live cells were stained green. Data presented here are representative of three independent experiments. [ PDF file] (3171 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error