1887

Abstract

is a major cause of human diarrhoeal disease, but specific virulence mechanisms have not been well defined. This blinded study was undertaken with 40 isolates from different sources to determine their haemolytic, cytotoxic and adhesion and invasion activities towards mammalian cells. The results were correlated with source of isolation and genetic makeup by amplified fragment length polymorphism (AFLP) typing. The isolates had variable degrees of haemolytic activity against rabbit erythrocytes and cytotoxicity towards CaCo-2, HeLa and Vero cells. The data indicated that the haemolytic and cytotoxic activities were due to separate factors. A range of cytotoxicity was exhibited, whereby some strains had no activity against the target cells and others had activity against all three cell lines. Certain strains had activity against CaCo-2 cells but little or no activity against the other cells, while others exhibited the opposite phenotype. The data suggested that the cytotoxicity assay with the different cell lines may have detected more than one cytotoxin. A wide variation between isolates was observed for both adherence and invasion with all three cell lines, yet, overall, the strains showed a significantly greater invasion capacity for CaCo-2. There was no clear relationship between source of isolation or disease manifestation and possession of statistically significantly higher levels of particular virulence-associated factors although, in some cases, a correlation between cytotoxicity and cell invasion was evident. Five AFLP clusters, each representing two to eleven isolates with similar profiles, were observed at the 90 % similarity level. Some AFLP groups contained isolates with a common serotype, but each group had isolates from more than one source with the exception of group IV, which contained only human isolates. Isolates with high cytotoxic activity against CaCo-2 cells were confined to groups I, III and IV and a group of unrelated strains (U). Group II isolates had uniformly low cytotoxicity. Isolates in groups I, V and U were more invasive for CaCo-2 cells than isolates in groups II, III and IV. The strain differences in cytotoxicity or invasion did not correlate with source of isolation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47130-0
2007-06-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/6/722.html?itemId=/content/journal/jmm/10.1099/jmm.0.47130-0&mimeType=html&fmt=ahah

References

  1. Coote, J. G. & Arain, T. ( 1996; ). A rapid, colourimetric assay for cytotoxin activity in Campylobacter jejuni. FEMS Immunol Med Microbiol 13, 65–70.[CrossRef]
    [Google Scholar]
  2. de Boer, P., Wagenaar, J. A., Achterberg, R. P., van Putten, J. P. M., Schouls, L. M. & Duim, B. ( 2002; ). Generation of Campylobacter jejuni genetic diversity in vivo. Mol Microbiol 44, 351–359.[CrossRef]
    [Google Scholar]
  3. Desai, M., Logan, J. M. J., Frost, J. A. & Stanley, J. ( 2001; ). Genome sequence-based fluorescent amplified fragment length polymorphism of Campylobacter jejuni, its relationship to serotyping and its implications for epidemiological analysis. J Clin Microbiol 39, 3823–3829.[CrossRef]
    [Google Scholar]
  4. Dingle, K. E., Colles, F. M., Ure, R., Wagenaar, J. A., Duim, B., Bolton, F. J., Fox, A. J., Wareing, D. R. A. & Maiden, M. C. ( 2002; ). Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. Emerg Infect Dis 8, 949–955.[CrossRef]
    [Google Scholar]
  5. Dorrell, N., Mangan, J. A., Laing, K. G., Hinds, J., Linton, D., Al-Ghusein, H., Barrell, B. G., Parkhill, J., Stoker, N. G. & other authors ( 2001; ). Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res 11, 1706–1715.[CrossRef]
    [Google Scholar]
  6. Duim, B., Wassenaar, T. M., Rigter, A. & Wagenaar, J. ( 1999; ). High-resolution genotyping of Campylobacter strains isolated from poultry and humans with amplified fragment length polymorphism fingerprinting. Appl Environ Microbiol 65, 2369–2375.
    [Google Scholar]
  7. Everest, P. H., Goosens, H., Butzler, J. P., Lloyd, D., Knutton, S., Ketley, J. M. & Williams, P. H. ( 1992; ). Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni and C. coli. J Med Microbiol 37, 319–325.[CrossRef]
    [Google Scholar]
  8. Everest, P. H., Cole, A. T., Hawkey, C. J., Knutton, S., Goosens, H., Butzler, J. P., Ketley, J. M. & Williams, P. H. ( 1993; ). Roles of leukotriene B4, prostaglandin E2 and cyclic AMP in Campylobacter jejuni-induced intestinal fluid secretion. Infect Immun 61, 4885–4887.
    [Google Scholar]
  9. Fitzgerald, C., Owen, R. J. & Stanley, J. ( 1996; ). Comprehensive ribotyping scheme for heat-stable serotypes of Campylobacter jejuni. J Clin Microbiol 34, 265–269.
    [Google Scholar]
  10. Fitzgerald, C., Stanley, J., Andrew, S. & Jones, K. ( 2001; ). Use of pulse-field gel electrophoresis and flagellin gene typing in identifying clonal groups of Campylobacter jejuni and Campylobacter coli in farm and clinical environments. Appl Environ Microbiol 67, 1429–1436.[CrossRef]
    [Google Scholar]
  11. Gaynor, E. C., Cawthraw, S., Manning, G., MacKichan, J. K., Falkow, S. & Newell, D. G. ( 2004; ). The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol 186, 503–517.[CrossRef]
    [Google Scholar]
  12. Griffiths, P. L. & Park, R. W. A. ( 1990; ). Campylobacters associated with human diarrhoeal disease. J Appl Bacteriol 69, 281–301.[CrossRef]
    [Google Scholar]
  13. Guerrant, R. L., Wanke, C. A., Pennie, R. A., Barrett, L. J., Lima, A. A. M. & O'Brien, A. D. ( 1987; ). Production of a unique cytotoxin by Campylobacter jejuni. Infect Immun 55, 2526–2530.
    [Google Scholar]
  14. Hickey, T. E., Baqar, S., Bourgeois, A. L., Ewing, C. P. & Guerry, P. ( 1999; ). Campylobacter jejuni stimulated secretion of interleukin-8 by INT407 cells. Infect Immun 67, 88–93.
    [Google Scholar]
  15. Hossain, A., Stewart-Tull, D. E. S. & Freer, J. H. ( 1993; ). Heat-labile and heat-stable haemolysins of Campylobacter jejuni. FEMS Immunol Med Microbiol 6, 331–340.[CrossRef]
    [Google Scholar]
  16. Ketley, J. M. ( 1997; ). Pathogenesis of enteric infection by Campylobacter. Microbiology 143, 5–21.[CrossRef]
    [Google Scholar]
  17. Kokotovic, B. & On, S. L. W. ( 1999; ). High-resolution genomic fingerprinting of Campylobacter jejuni and Campylobacter coli by analysis of amplified fragment length polymorphisms. FEMS Microbiol Lett 173, 77–84.[CrossRef]
    [Google Scholar]
  18. Konkel, M. E. & Joens, L. A. ( 1989; ). Adhesion to and invasion of HEp-2 cells by Campylobacter spp. Infect Immun 57, 2984–2990.
    [Google Scholar]
  19. Konkel, M. E., Corwin, M. D., Joens, L. A. & Cieplak, W. ( 1992; ). Factors that influence the interaction of Campylobacter jejuni with cultured mammalian cells. J Med Microbiol 37, 30–37.[CrossRef]
    [Google Scholar]
  20. Lara-Tejero, M. & Galan, J. E. ( 2002; ). Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends Microbiol 10, 147–152.[CrossRef]
    [Google Scholar]
  21. Lee, A., Smith, S. C. & Coloe, P. J. ( 2000; ). Detection of a novel campylobacter cytotoxin. J Appl Microbiol 89, 719–725.[CrossRef]
    [Google Scholar]
  22. Leonard, E. E., Takata, T., Blaser, M. J., Falkow, S., Tompkins, L. S. & Gaynor, E. C. ( 2003; ). Use of an open-reading frame-specific Campylobacter jejuni DNA microarray as a new genotyping tool for studying epidemiologically related isolates. J Infect Dis 187, 691–694.[CrossRef]
    [Google Scholar]
  23. MacCallum, A., Haddock, G. & Everest, P. H. ( 2005; ). Campylobacter jejuni activates mitogen-activated protein kinases in Caco-2 cell monolayers and in vitro infected primary human colonic tissue. Microbiology 151, 2765–2772.[CrossRef]
    [Google Scholar]
  24. Mellits, K. H., Mullen, J., Wand, M., Armbruster, G., Patel, A., Connerton, P. L., Skelly, M. & Connerton, I. F. ( 2002; ). Activation of the transcription factor NF-κB by Campylobacter jejuni. Microbiology 148, 2753–2763.
    [Google Scholar]
  25. Misawa, N., Hirayama, K., Itoh, K. & Takahashi, E. ( 1995a; ). Detection of alpha- and beta-hemolytic-like activity from Campylobacter jejuni. J Clin Microbiol 33, 729–731.
    [Google Scholar]
  26. Misawa, N., Ohnishi, T., Itoh, K. & Takahashi, E. ( 1995b; ). Cytotoxin detection in Campylobacter jejuni strains of human and animal origin with three tissue culture systems. J Med Microbiol 43, 354–359.[CrossRef]
    [Google Scholar]
  27. Moore, M. A., Blaser, M. J., Perez-Perez, G. I. & O'Brien, A. D. ( 1988; ). Production of a Shiga-like toxin by Campylobacter. Microb Pathog 4, 455–462.[CrossRef]
    [Google Scholar]
  28. Nadeau, E., Messier, S. & Quessy, S. ( 2003; ). Comparison of Campylobacter isolates from poultry and humans: association between in vitro virulence properties, biotypes and pulse-field gel electrophoresis clusters. Appl Environ Microbiol 69, 6316–6320.[CrossRef]
    [Google Scholar]
  29. Oelschlaeger, T. A., Guerry, P. & Kopecko, D. J. ( 1993; ). Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc Natl Acad Sci U S A 90, 6884–6888.[CrossRef]
    [Google Scholar]
  30. On, S. L. W. & Harrington, C. S. ( 2000; ). Identification of taxonomic and epidemiological relationships among Campylobacter species by numerical analysis of AFLP profiles. FEMS Microbiol Lett 193, 161–169.[CrossRef]
    [Google Scholar]
  31. On, S. L. W., Nielson, E. M., Engberg, J. & Madsen, M. ( 1998; ). Validity of SmaI-defined genotypes of Campylobacter jejuni examined by SalI, KpnI and BamHI polymorphisms: evidence of identical clones infecting humans, poultry and cattle. Epidemiol Infect 120, 231–237.[CrossRef]
    [Google Scholar]
  32. On, S. L. W., Dorrell, N., Petersen, L., Bang, D. D., Morris, S., Forsythe, S. J. & Wren, B. W. ( 2006; ). Numerical analysis of DNA microarray data of Campylobacter jejuni strains correlated with survival, cytolethal distending toxin and haemolysin analyses. Int J Med Microbiol 296, 353–363.[CrossRef]
    [Google Scholar]
  33. Owen, R. J., Sutherland, K., Fitzgerald, C., Gibson, J., Borman, P. & Stanley, J. ( 1995; ). Molecular subtyping scheme for serotypes HS1 and HS4 of Campylobacter jejuni. J Clin Microbiol 33, 872–877.
    [Google Scholar]
  34. Pang, T., Wong, P. Y., Puthucheary, S. D., Sihotang, K. & Chang, W. K. ( 1987; ). In-vitro and in-vivo studies of a cytotoxin from Campylobacter jejuni. J Med Microbiol 23, 193–198.[CrossRef]
    [Google Scholar]
  35. Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., Chillingworth, T., Davies, R. M., Feltwell, T. & other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.[CrossRef]
    [Google Scholar]
  36. Penner, J. L. & Hennessy, J. N. ( 1980; ). Passive hemagglutination technique for serotyping Campylobacter fetus subsp jejuni on the basis of soluble heat-stable antigens. J Clin Microbiol 12, 732–737.
    [Google Scholar]
  37. Pickett, C. L. ( 2000; ). Campylobacter toxins and their role in pathogenesis. In Campylobacter, 2nd edn, pp. 179–190. Edited by I. Nachamkin & M. J. Blaser. Washington DC: American Society for Microbiology.
  38. Pickett, C. L., Auffenberg, T., Pesci, E. C., Sheen, V. L. & Jusef, S. S. D. ( 1992; ). Iron acquisition and hemolysin production by Campylobacter jejuni. Infect Immun 60, 3872–3877.
    [Google Scholar]
  39. Purdy, D., Buswell, C. M., Hodgson, A. E., McAlpine, K., Henderson, I. & Leach, S. A. ( 2000; ). Characterisation of cytolethal distending toxin (CDT) mutants of Campylobacter jejuni. J Med Microbiol 49, 473–479.
    [Google Scholar]
  40. Russell, R. G., O'Donnoghue, M., Blake, D. C., Jr, Zulty, J. & DeTolla, L. J. ( 1993; ). Early colonic damage and invasion of Campylobacter jejuni in experimentally challenged infant Macaca mulatta. J Infect Dis 168, 210–215.[CrossRef]
    [Google Scholar]
  41. Schouls, L. M., Reulen, S., Duim, B., Wagenaar, J. A., Willems, R. J. L., Dingle, K. E., Colles, F. M. & Van Embden, J. D. A. ( 2003; ). Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing and short repeat sequencing: strain diversity, host range and recombination. J Clin Microbiol 41, 15–26.[CrossRef]
    [Google Scholar]
  42. Siemer, B. L., Harrington, C. S., Nielsen, E. M., Borck, B., Nielsen, N. L., Engberg, J. & On, S. L. W. ( 2004; ). Genetic relatedness among Campylobacter jejuni serotyped isolates of diverse origin as determined by numerical analysis of amplified fragment length polymorphism (AFLP) profiles. J Appl Microbiol 96, 795–802.[CrossRef]
    [Google Scholar]
  43. Siemer, B. L., Nielsen, E. M. & On, S. L. W. ( 2005; ). Identification and molecular epidemiology of Campylobacter coli isolates from human gastroenteritis, food, and animal sources by amplified fragment length polymorphism analysis and Penner serotyping. Appl Environ Microbiol 71, 1953–1958.[CrossRef]
    [Google Scholar]
  44. Suerbaum, S., Lohrengel, M., Sonnevend, A., Ruberg, F. & Kist, M. ( 2001; ). Allelic diversity and recombination in Campylobacter jejuni. J Bacteriol 183, 2553–2559.[CrossRef]
    [Google Scholar]
  45. Tay, S. T., Devi, S., Puthucheary, S. & Kautner, I. M. ( 1995; ). Detection of haemolytic activity of campylobacters by agarose haemolysis and microplate assay. J Med Microbiol 42, 175–180.[CrossRef]
    [Google Scholar]
  46. Ullmann, U. ( 1979; ). Methods in Campylobacter. Methods Microbiol 13, 435–452.
    [Google Scholar]
  47. Wardlaw, A. C. ( 2000; ). Practical Statistics for Experimental Biologists, 2nd edn. Chichester: Wiley.
  48. Wassenaar, T. M. ( 1997; ). Toxin production by Campylobacter spp. Clin Microbiol Rev 10, 466–476.
    [Google Scholar]
  49. Wassenaar, T. M. & Blaser, M. J. ( 1999; ). Pathophysiology of Campylobacter jejuni infections of humans. Microbes Infect 1, 1023–1033.[CrossRef]
    [Google Scholar]
  50. Wassenaar, T. M., Geilhausen, B. & Newell, D. G. ( 1998; ). Evidence of genomic instability in Campylobacter jejuni isolated from poultry. Appl Environ Microbiol 64, 1816–1821.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47130-0
Loading
/content/journal/jmm/10.1099/jmm.0.47130-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error