1887

Abstract

Acute hypercytokinaemia represents an imbalance of pro-inflammatory and anti-inflammatory cytokines, and is believed to be responsible for the development of acute respiratory distress syndrome and multiple organ failure in severe cases of avian (H5N1) influenza. Although neuraminidase inhibitors are effective in treating avian influenza, especially if given within 48 h of infection, it is harder to prevent the resultant hypercytokinaemia from developing if the patient does not seek timely medical assistance. Steroids have been used for many decades in a wide variety of inflammatory conditions in which hypercytokinaemia plays a role, such as sepsis and viral infections, including severe acquired respiratory syndromes and avian influenza. However, to date, the results have been mixed. Part of the reason for the discrepancies might be the lack of understanding that low doses are required to prevent mortality in cases of adrenal insufficiency. Adrenal insufficiency, as defined in the sepsis/shock literature, is a plasma cortisol rise of at least 9 μg dl following a 250 μg dose of adrenocorticotropin hormone (ACTH), or reaching a plasma cortisol concentration of >25 μg dl following a 1–2 μg dose of ACTH. In addition, in the case of hypercytokinaemia induced by potent viruses, such as H5N1, systemic inflammation-induced, acquired glucocorticoid resistance is likely to be present. Adrenal insufficiency can be overcome, however, with prolonged (7–10 or more days) supraphysiological steroid treatment at a sufficiently high dose to address the excess activation of NF-B, but low enough to avoid immune suppression. This is a much lower dose than has been typically used to treat avian influenza patients. Although steroids cannot be used as a monotherapy in the treatment of avian influenza, there might be a potential role for their use as an adjunct treatment to antiviral therapy if appropriate dosages can be determined. In this paper, likely mechanisms of adrenal insufficiency are discussed, drawing from a broad background of literature sources.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47124-0
2007-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/7/875.html?itemId=/content/journal/jmm/10.1099/jmm.0.47124-0&mimeType=html&fmt=ahah

References

  1. Ali, M., Allen, H. R., Vedeckis, W. V. & Lang, C. H. ( 1991; ). Depletion of rat liver glucocorticoid receptor hormone-binding and its mRNA in sepsis. Life Sci 48, 603–611.[CrossRef]
    [Google Scholar]
  2. Annane, D., Sebille, V., Troche, G., Raphael, J. C., Gajdos, G. & Bellisant, E. ( 2000; ). A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 283, 1038–1045.[CrossRef]
    [Google Scholar]
  3. Annane, D., Bellissant, E., Bollaert, P. E., Briegel, J., Keh, D. & Kupfer, Y. ( 2004; ). Corticosteroids for severe sepsis and septic shock: a systematic review and meta-analysis. BMJ 329, 480 [CrossRef]
    [Google Scholar]
  4. Bateman, A., Singh, A., Kral, T. & Solomon, S. ( 1989; ). The immune-hypothalamic-pituitary-adrenal axis. Endocr Rev 10, 92–112.[CrossRef]
    [Google Scholar]
  5. Beigel, J. H., Farrar, J., Han, A. M., Hayden, F. G., Hyer, R., de Jong, M. D., Lochindarat, S., Tien, N. T. K., Hein, N. T. & other authors ( 2005; ). Avian influenza A (H5N1) infection in humans. N Engl J Med 353, 1374–1385.[CrossRef]
    [Google Scholar]
  6. Bernard, G. ( 2002; ). The International Sepsis Forum's controversies in sepsis: corticosteroids should not be routinely used to treat septic shock. Crit Care 6, 384–386.[CrossRef]
    [Google Scholar]
  7. Besedovsky, H. O. & del Ray, A. ( 1996; ). Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 17, 64–102.[CrossRef]
    [Google Scholar]
  8. Chadda, K. & Annane, D. ( 2002; ). The use of corticosteroids in severe sepsis and acute respiratory distress syndrome. Ann Med 34, 582–589.[CrossRef]
    [Google Scholar]
  9. Chan, M. C. W., Cheung, C. Y., Chui, W. H., Tsao, S. W., Nicholls, J. M., Chan, Y. O., Chan, R. W. Y., Long, H. T., Poon, L. L. M. & other authors ( 2005; ). Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir Res 6, 135 [CrossRef]
    [Google Scholar]
  10. Chokephaibulkit, K., Uiprasertkul, M., Puthavathana, P., Chearskul, P., Auewarakul, P., Dowell, S. F. & Vanprapar, N. ( 2005; ). A child with avian influenza A (H5N1) infection. Pediatr Infect Dis J 24, 162–166.[CrossRef]
    [Google Scholar]
  11. Chotpitayasunondh, T., Ungchusak, K., Hanshaoworakul, W., Chunsuthiwat, S., Sawanpanyalert, P., Kijphati, R., Lochindarat, S., Srisan, P., Suwan, P. & other authors ( 2005; ). Human disease from influenza A (H5N1), Thailand. Emerg Infect Dis 11, 201–209.[CrossRef]
    [Google Scholar]
  12. Cutolo, M., Sulli, A., Pizzorni, C., Secchi, M. E., Soldano, S., Seriolo, B., Starub, R. H., Otsa, K. & Maestroni, G. J. ( 2006; ). Circadian rhythms: glucocorticoids and arthritis. Ann N Y Acad Sci 1069, 289–299.[CrossRef]
    [Google Scholar]
  13. de Jong, M. D., Simmons, C. P., Thanh, T. T., Hien, V. M., Smith, G. J. D., Chau, T. N. B., Hoang, D. M., Chau, N. V. V., Khanh, T. H. & other authors ( 2006; ). Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12, 1203–1207.[CrossRef]
    [Google Scholar]
  14. Fedson, D. S. ( 2006; ). Pandemic influenza: a potential role for statins in treatment and prophylaxis. Clin Infect Dis 43, 199–205.[CrossRef]
    [Google Scholar]
  15. Fernandez-Sesma, A., Marukian, S., Ebersole, B. J., Kaminski, D., Park, M. S., Yuen, T., Sealfon, S. C., Garcia-Sastre, A. & Moran, T. M. ( 2006; ). Influenza virus evades innate and adaptive immunity via the NS1 protein. J Virol 80, 6295–6304.[CrossRef]
    [Google Scholar]
  16. Gaillard, R. C., Turnill, D., Sappino, P. & Muller, A. F. ( 1990; ). Tumor necrosis factor alpha inhibits the hormonal response of the pituitary gland to hypothalamic releasing factors. Endocrinology 127, 101–106.[CrossRef]
    [Google Scholar]
  17. Garcia-Sastre, A. ( 2006; ). Antiviral response in pandemic influenza viruses. Emerg Infect Dis 12, 44–47.[CrossRef]
    [Google Scholar]
  18. Gomersall, C. D., Kargel, M. J. & Lapinsky, S. E. ( 2004; ). Pro/con clinical debate: steroids are a key component in the treatment of SARS. Crit Care 8, 105–107.[CrossRef]
    [Google Scholar]
  19. Guo, J. Y., Huo, H. R., Zhao, B. S., Liu, H. B., Li, L. F., Ma, Y. Y., Guo, S. Y. & Jiang, T. L. ( 2006; ). Cinnamaldehyde reduces Il-1 β-induced cycloxygenase activity in rat cerebral microvascular endothelial cells. Eur J Pharmacol 537, 174–180.[CrossRef]
    [Google Scholar]
  20. Hien, T. T., Liem, N.T., Dung, N. T., San, L. T., Mai, P. P., van Vinh Chau, N., Suu, P. T., Dong, V. C., Mai, L. T. Q. & other authors ( 2004; ). Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med 350, 1179–1188.[CrossRef]
    [Google Scholar]
  21. Hsieh, S. M. & Chang, S. C. ( 2006; ). Cutting edge: insufficient perforin expression in CD8+ T cells in response to hemagglutinin from avian influenza (H5N1) virus. J Immunol 176, 4530–4533.[CrossRef]
    [Google Scholar]
  22. Hussell, T., Pennycook, A. & Openshaw, P. J. ( 2001; ). Inhibition of tumor necrosis factor reduces the severity of virus-lung immunopathology. Eur J Immunol 31, 2566–2573.[CrossRef]
    [Google Scholar]
  23. Jaattela, M., Carpen, O., Stenman, U. H. & Saksela, E. ( 1990; ). Regulation of ACTH-induced steroidogenesis in human fetal adrenals by rTNF-α. Mol Cell Endocrinol 68, R31–R36.[CrossRef]
    [Google Scholar]
  24. Jaattela, M., Ilvesmaki, V., Voutilainen, R., Stenman, U. H. & Saksela, E. ( 1991; ). Tumor necrosis factor as a potent inhibitor of adrenocorticotropin-induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells. Endocrinology 128, 623–629.[CrossRef]
    [Google Scholar]
  25. Jefferies, W. M., Turner, J. C., Lobo, M. & Gwaltney, J. M., Jr ( 1998; ). Low plasma levels of adrenocorticotropin hormone in patients with acute influenza. Clin Infect Dis 26, 708–710.[CrossRef]
    [Google Scholar]
  26. Kandun, I. N., Wibisono, H., Sedyaningsih, E. R., Yusharmen, D. P. H., Hadisoedarsuno, W., Purba, W., Santoso, H., Septiawati, C., Tresnaningsih, E. & other authors ( 2006; ). Three Indonesian clusters of H5N1 virus infection in 2005. N Engl J Med 355, 2186–2194.[CrossRef]
    [Google Scholar]
  27. Kash, J. C., Basler, C. F., García-Sastre, A., Carter, V., Billharz, R., Swayne, D. E., Przygodzki, R. M., Taubenberger, J. K., Katze, M. G. & Tumpey, T. M. ( 2004; ). Global host immune response: pathogenesis and transcriptional profiling of type A influenza expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus. J Virol 78, 9499–9511.[CrossRef]
    [Google Scholar]
  28. Kennedy, M. J., Carpenter, J. M., Lozano, R. A. & Castile, R. G. ( 2002; ). Impaired recovery of hypothalamic–pituitary–adrenal axis function and hypoglycemic seizures after high-dose inhaled corticosteroid therapy in a toddler. Ann Allergy Asthma Immunol 88, 523–526.[CrossRef]
    [Google Scholar]
  29. Konstantinos, A. P. & Sheridan, J. F. ( 2001; ). Stress and influenza viral infection: modulation of proinflammatory cytokine responses in the lung. Respir Physiol 128, 71–77.[CrossRef]
    [Google Scholar]
  30. Lee, D. C. W., Cheung, C. Y., Law, A. H. Y., Mok, C. K. P., Peiris, M. & Lau, A. S. Y. ( 2005; ). p38 mitogen-activated protein kinase-dependent hyperinduction of tumor necrosis factor α expression in response to avian influenza virus H5N1. J Virol 79, 10147–10154.[CrossRef]
    [Google Scholar]
  31. Li, Y. M., Wang, S. X., Gao, H. S., Wang, J. G., Wei, C. S., Chen, L. M., Hui, W. L., Yuan, S. L., Jiao, Z. S. & other authors ( 2004; ). Factors of avascular necrosis of femoral head and osteoporosis in SARS patient' convalescence. Zhonghua Yi Xue Za Zhi 84, 1348–1353 (in Chinese).
    [Google Scholar]
  32. Liu, B., Mori, I., Hossian, M. J., Dong, L., Takeda, K. & Kimura, Y. ( 2004; ). Interleukin-18 improves the early defence system against influenza infection by augmenting natural killer cell-mediated cytotoxicity. J Gen Virol 85, 423–428.[CrossRef]
    [Google Scholar]
  33. Loutfy, M. R., Blatt, L. M., Siminovitch, K. A., Ward, S., Wolff, B., Lho, H., Pham, D. H., Deif, H., LaMere, E. A. & other authors ( 2003; ). Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA 290, 3222–3228.[CrossRef]
    [Google Scholar]
  34. Marik, P. E. & Zaloga, G. P. ( 2002; ). Adrenal insufficiency in the critically ill: a new look at an old problem. Chest 122, 1784–1796.[CrossRef]
    [Google Scholar]
  35. Mastorakos, G., Chrousos, G. P. & Weber, J. S. ( 1993; ). Recombinant interleukin-6 activates the hypothalamic–pituitary–adrenal axis in humans. J Clin Endocrinol Metab 77, 1690–1694.
    [Google Scholar]
  36. Matikainen, S., Siren, J., Tissari, J., Veckman, V., Pirhonen, J., Severa, M., Sun, Q., Lin, R., Meri, S. & other authors ( 2006; ). Tumor necrosis factor α enhances influenza virus-induced expression of antiviral cytokines by activating RIG-I expression. J Virol 80, 3515–3522.[CrossRef]
    [Google Scholar]
  37. Meduri, G. U. & Chrousos, G. P. ( 1998; ). Duration of glucocorticoid treatment and outcome in sepsis: is the right drug used in the wrong way?. Chest 114, 355–360.[CrossRef]
    [Google Scholar]
  38. Meduri, G. U. & Yates, C. R. ( 2004; ). Systematic inflammation-associated glucocorticoid resistance and outcome of ARDS. Ann N Y Acad Sci 1024, 24–53.[CrossRef]
    [Google Scholar]
  39. Molijn, G. J., Koper, J. W., van Uffelen, C. J., de Jong, F. H., Brinkmann, A. O., Bruining, H. A. & Lamberts, S. W. ( 1995; ). Temperature-induced down-regulation of the glucocorticoid receptor in peripheral blood mononuclear leucocyte in patients with sepsis or septic shock. Clin Endocrinol (Oxf) 43, 197–203.[CrossRef]
    [Google Scholar]
  40. Moscona, A. ( 2005; ). Neuraminidase inhibitors for influenza. N Engl J Med 353, 1363–1373.[CrossRef]
    [Google Scholar]
  41. Ng, P. C., Lam, C. W., Li, A. M., Wong, C. K., Cheng, F. W., Leung, T. F., Hon, E. K., Chan, I. H., Li, C. K. & other authors ( 2004; ). Inflammatory cytokine profile in children with severe acute respiratory syndrome. Pediatrics 113, e7–e14.[CrossRef]
    [Google Scholar]
  42. Ng, W. F., To, K. F., Lam, W. W., Ng, T. K. & Lee, K. C. ( 2006; ). The comparative pathology of severe acute respiratory syndrome and avian influenza A subtype H5N1 - a review. Hum Pathol 37, 381–390.[CrossRef]
    [Google Scholar]
  43. Nunoi, H., Mercado, M. R., Mizukami, T., Okajima, K., Morishima, T., Sakata, H., Nakayama, S., Mori, S., Hayashi, M. & other authors ( 2005; ). Apoptosis under hypercytokinemia is a possible pathogenesis in influenza-associated encephalopathy. Pediatr Int 47, 175–179.[CrossRef]
    [Google Scholar]
  44. Onoguchi, K., Yoneyama, M., Takemura, A., Akira, S., Taniguchi, T., Namiki, H. & Fujita, T. ( 2007; ). Viral infections activate type I and type III interferon genes through a common mechanism. J Biol Chem 282, 7576–7581.
    [Google Scholar]
  45. Osterholm, M. T. ( 2005; ). Preparing for the next flu pandemic. N Engl J Med 352, 1839–1842.[CrossRef]
    [Google Scholar]
  46. Ottolini, M., Blanco, J., Porter, D., Peterson, L., Curtis, S. & Prince, G. ( 2003; ). Combination of anti-inflammatory and antiviral therapy of influenza in a cotton rat model. Pediatr Pulmonol 36, 290–294.[CrossRef]
    [Google Scholar]
  47. Ottolini, M. G., Blanco, J. C. G., Eichelberger, M. C., Porter, D. D., Pletneva, L., Richardson, J. Y. & Prince, G. A. ( 2005; ). The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis. J Gen Virol 86, 2823–2830.[CrossRef]
    [Google Scholar]
  48. Padgett, D. A., Loria, R. M. & Sheridan, J. F. ( 2000; ). Steroid hormone regulation of antiviral immunity. Ann N Y Acad Sci 917, 935–943.
    [Google Scholar]
  49. Palucka, A. K., Blanck, J. P., Bennett, L., Pascual, V. & Banchereau, J. ( 2005; ). Cross-regulation of TNF and IFN-α in autoimmune diseases. Proc Natl Acad Sci U S A 102, 3372–3377.[CrossRef]
    [Google Scholar]
  50. Pawliczak, R., Logun, C., Madara, P., Barb, J., Suffredini, A. F., Munson, P. J., Danner, R. L. & Shelhamer, J. H. ( 2005; ). Influence of IFN-γ on gene expression in normal bronchial epithelial cells: modulation of IFN-γ effects by dexamethasone. Physiol Genomics 23, 28–45.[CrossRef]
    [Google Scholar]
  51. Poutanen, S. M., Low, D. E., Henry, B., Finkelstein, S., Rose, D., Green, K., Tellier, R., Draker, R., Adachi, D. & other authors ( 2003; ). Identification of severe acute respiratory syndrome in Canada. N Engl J Med 348, 1995–2005.[CrossRef]
    [Google Scholar]
  52. Pretorius, E., Wallner, B. & Marx, J. ( 2006; ). Cortisol resistance in conditions such as asthma and the involvement of 11-β-HSD-2: a hypothesis. Horm Metab Res 38, 368–376.[CrossRef]
    [Google Scholar]
  53. Rainsford, K. D. ( 2006; ). Influenza (‘Bird Flu’), inflammation, and anti-inflammatory/analgesic drugs. Inflammopharmacology 14, 2–9.[CrossRef]
    [Google Scholar]
  54. Reily, M. M., Pantoja, C., Hu, X., Chinenov, Y. & Rogatsky, I. ( 2006; ). The GRIP : IRF3 interaction as a target for glucocorticoid receptor-mediated immunosuppression. EMBO J 25, 108–117.[CrossRef]
    [Google Scholar]
  55. Rio, J., Nos, C., Marzo, M. E., Tintore, M. & Montalban, X. ( 1998; ). Low-dose steroids reduce flu-like symptoms at the initiation of IFNbeta-lb in relapsing-remitting MS. Neurology 50, 1910–1912.[CrossRef]
    [Google Scholar]
  56. Samuels, M. H. ( 2000; ). Effects of variations in physiological cortisol levels on thyrotropin secretion in subjects with adrenal insufficiency: a clinical research center study. J Clin Endocrinol Metab 85, 1388–1393.
    [Google Scholar]
  57. Sareneva, T., Matikainen, S., Kurimoto, M. & Julkunen, I. ( 1998; ). Influenza A virus-induced IFN-αβ and Il-18 synergistically enhance IFN-γ expression in human T cells. J Immunol 160, 6032–6038.
    [Google Scholar]
  58. Sladkova, T. & Kostolansky, F. ( 2006; ). The role of cytokines in the immune response to influenza A virus infection. Acta Virol 50, 151–162.
    [Google Scholar]
  59. Stockman, L. J., Bellamy, R. & Garner, P. ( 2006; ). SARS: systematic review of treatment effects. PLoS Med 3, e343 [CrossRef]
    [Google Scholar]
  60. Suntharalingam, G., Perry, M. R., Ward, S., Brett, S. J., Castello-Cortes, A., Brunner, M. D. & Panoskaltsis, N. ( 2006; ). Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355, 1018–1028.[CrossRef]
    [Google Scholar]
  61. Suzuki, F., Oya, J. & Ishida, N. ( 1974; ). Effect of antilymphocyte serum on influenza virus infection in mice. Proc Soc Exp Biol Med 146, 78–84.[CrossRef]
    [Google Scholar]
  62. To, K. F., Chan, P. K., Chan, K. F., Lee, W. K., Lam, W. Y., Wong, K. F., Tang, N. L., Tsang, D. N., Sung, R. Y. & other authors ( 2001; ). Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol 63, 242–246.[CrossRef]
    [Google Scholar]
  63. Uiprasertkul, M., Puthavathana, P., Sangsiriwut, K., Pooruk, P., Srisook, K., Peiris, M., Nicholls, J. M., Chokephaibulkit, K., Vanprapar, N. & Auewarakul, P. ( 2005; ). Influenza A H5N1 replication sites in humans. Emerg Infect Dis 11, 1036–1041.[CrossRef]
    [Google Scholar]
  64. Webster, R. G. & Govorkova, E. A. ( 2006; ). H5N1 influenza—continuing evolution and spread. N Engl J Med 355, 2174–2177.[CrossRef]
    [Google Scholar]
  65. Wei, L., Sandbulte, M. R., Thomas, P. G., Webby, R. J., Homayouni, R. & Pfeffer, R. M. ( 2006; ). NFκB negatively regulates interferon-induced gene expression and anti-influenza activity. J Biol Chem 281, 11678–11684.[CrossRef]
    [Google Scholar]
  66. Wheatland, R. ( 2004; ). Molecular mimicry of ACTH in SARS – implications for corticosteroid treatment and prophylaxis. Med Hypotheses 63, 855–862.[CrossRef]
    [Google Scholar]
  67. World Health Organization (WHO) ( 2005; ). Evolution of H5N1 avian influenza viruses in Asia. Emerg Infect Dis 11, 1515–1521.[CrossRef]
    [Google Scholar]
  68. Yuen, K. Y. & Wong, S. S. Y. ( 2005; ). Human infection by avian influenza A H5N1. Hong Kong Med J 11, 189–199.
    [Google Scholar]
  69. Yuen, K. Y., Chan, P. K. S., Peiris, M., Tsang, D. N. C., Que, T. L., Shortridge, K. F., Cheung, P. T., To, W. K., Ho, E. T. F. & other authors ( 1998; ). Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351, 467–471.[CrossRef]
    [Google Scholar]
  70. Zhao, Z., Zhang, F., Xu, M., Huang, K., Zhong, W., Cai, W., Yin, Z., Huang, S., Deng, Z. & other authors ( 2003; ). Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China. J Med Microbiol 52, 715–720.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47124-0
Loading
/content/journal/jmm/10.1099/jmm.0.47124-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error