Racemoside A, an anti-leishmanial, water-soluble, natural steroidal saponin, induces programmed cell death in Free

Abstract

Leishmaniasis remains a major health problem of the tropical and subtropical world. The visceral form causes the most fatalities if left untreated. Dramatic increases in the rates of infection and drug resistance and the non-availability of safe vaccines have highlighted the need for identification of novel and inexpensive anti-leishmanial agents. This study reports that racemoside A, a water-soluble steroidal saponin purified from the fruits of , is a potent anti-leishmanial molecule effective against antimonial-sensitive (strain AG83) and -unresponsive (strain GE1F8R) promastigotes, with IC values of 1.15 and 1.31 μg ml, respectively. Incubation of promastigotes with racemoside A caused morphological alterations including cell shrinkage, an aflagellated ovoid shape and chromatin condensation. This compound exerts its leishmanicidal effect through the induction of programmed cell death mediated by the loss of plasma membrane integrity as detected by binding of annexin V and propidium iodide, loss of mitochondrial membrane potential culminating in cell-cycle arrest at the sub-G/G phase, and DNA nicking shown by deoxynucleotidyltransferase-mediated dUTP end labelling (TUNEL). Racemoside A also showed significant activity against intracellular amastigotes of AG83 and GE1F8R at a 7–8-fold lower dose, with IC values of 0.17 and 0.16 μg ml, respectively, and was non-toxic to murine peritoneal macrophages up to a concentration of 10 μg ml. Hence, racemoside A is a potent anti-leishmanial agent that merits further pharmacological investigation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47114-0
2007-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/9/1196.html?itemId=/content/journal/jmm/10.1099/jmm.0.47114-0&mimeType=html&fmt=ahah

References

  1. Arnoult D., Akarid K., Grodet A., Petit P. X., Estaquier J., Amiesen J. C. 2002; On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine protease activation and mitochondrion permeabilization. Cell Death Differ 9:65–81 [CrossRef]
    [Google Scholar]
  2. Chava A. K., Chatterjee M., Mandal C. 2005; O -Acetyl sialic acids in parasitic diseases. In Handbook of Carbohydrate Engineering pp 71–98 Edited by Yarema K. J. Boca Raton, FL: Taylor & Francis;
    [Google Scholar]
  3. Delmas F., Di Giorgio C., Elias R., Gasquet M., Azas N., Mshvildadze V., Dekanosidze G., Kemertelidze E., Timon-David P. 2000; Antileishmanial activity of three saponins isolated from ivy, α -hederin, β -hederin and hederacolchiside A1, as compared to their action on mammalian cells cultured in vitro. Planta Med 66:343–347 [CrossRef]
    [Google Scholar]
  4. Desjeux P. 2004; Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318 [CrossRef]
    [Google Scholar]
  5. Dupouy-Camet J. 2004; New drugs for the treatment of human parasitic protozoa. Parassitologia 46:81–84
    [Google Scholar]
  6. Dutta A., Bandyopadhyay S., Mandal C., Chatterjee M. 2005; Development of a modified MTT assay for screening antimonial resistant field isolates of Indian visceral leishmaniasis. Parasitol Int 54:119–122 [CrossRef]
    [Google Scholar]
  7. Dutta A., Mandal G., Mandal C., Chatterjee M. 2007a; In vitro antileishmanial activity of Aloe vera leaf exudate: a potential herbal therapy in leishmaniasis. Glycoconj J 24:81–86
    [Google Scholar]
  8. Dutta A., Bandyopadhyay S., Mandal C., Chatterjee M. 2007b; Aloe vera leaf exudate induces a caspase-independent cell death in Leishmania donovani promastigotes. J Med Microbiol 56:629–636 [CrossRef]
    [Google Scholar]
  9. Germonprez N., Maes L., Van Puyvelde L., Van Tri M., Tuan D. A., De Kimpe N. 2005; In vitro and in vivo anti-leishmanial activity of triterpenoid saponins isolated from Maesa balansae and some chemical derivatives. J Med Chem 48:32–37 [CrossRef]
    [Google Scholar]
  10. Guerin P. J., Olliaro P., Sundar S., Boelaert M., Croft S. L., Desjeux P., Wasunna M. K., Brycerson A. D. 2002; Visceral leishmaniasis: current status of control, diagnosis and treatment and a proposed research and development agenda. Lancet Infect Dis 2:494–501 [CrossRef]
    [Google Scholar]
  11. Koonin E. V., Aravind L. 2002; Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 9:394–404 [CrossRef]
    [Google Scholar]
  12. Lee N., Bertholet S., Debrabant A., Muller J., Duncan R., Nakhasi H. L. 2002; Programmed cell death in the unicellular protozoan parasite Leishmania . Cell Death Differ 9:53–64 [CrossRef]
    [Google Scholar]
  13. Maes L., Vanden Berghe D., Germonprez N., Quirijnen L., Cos P., De Kimpe N., Van Puyvelde L. 2004; In vitro and in vivo activities of a triterpenoid saponin extract (PX-6518) from the plant Maesa balansae against visceral leishmania species. Antimicrob Agents Chemother 48:130–136 [CrossRef]
    [Google Scholar]
  14. Mandal D., Panda N., Kumar S., Banerjee S., Mandal N. B., Sahu N. P. 2006a; A triterpenoid saponin possessing antileishmanial activity from the leaves of Careya arborea . Phytochemistry 67:183–190 [CrossRef]
    [Google Scholar]
  15. Mandal D., Banerjee S., Mondal N. B., Chakraborty A. K., Sahu N. P. 2006b; Steroidal saponins from the fruits of Asparagus racemosus . Phytochemistry 67:1316–1321 [CrossRef]
    [Google Scholar]
  16. Mehta A., Shaha C. 2004; Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem 279:11798–11813 [CrossRef]
    [Google Scholar]
  17. Murray H. W., Berman J. D., Davies C. R., Saravia N. G. 2005; Advances in leishmaniasis. Lancet 366:1561–1577 [CrossRef]
    [Google Scholar]
  18. Oketch-Rabah H. A., Dossaji S. F., Christensen S. B., Frydenvang K., Lemmich E., Cornett C., Olsen C. E., Chen M., Kharazmi A., Theander T. 1997; Antiprotozoal compounds from Asparagus africanus . J Nat Prod 60:1017–1022 [CrossRef]
    [Google Scholar]
  19. Paris C., Loiseau P. M., Bories C., Breard J. 2004; Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 48:852–859 [CrossRef]
    [Google Scholar]
  20. Perez-Victoria F. J., Castanys S., Gamarro F. 2003; Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob Agents Chemother 47:2397–2403 [CrossRef]
    [Google Scholar]
  21. Reers M., Smiley T. S., Mottola-Hartshorn C., Chen A., Lin M., Chen L. B. 1995; Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406–417
    [Google Scholar]
  22. Roberts W. L., Rainey P. M. 1993; Antileishmanial activity of sodium stibogluconate fractions. Antimicrob Agents Chemother 37:1842–1846 [CrossRef]
    [Google Scholar]
  23. Sen N., Das B. B., Ganguly A., Mukherjee T., Tripathi G., Bandyopadhyay S., Rakshit S., Sen T., Majumder H. K. 2004; Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani . Cell Death Differ 11:924–936 [CrossRef]
    [Google Scholar]
  24. Sundar S., Chatterjee M. 2006; Visceral leishmaniasis – current therapeutic modalities. Indian J Med Res 123:345–352
    [Google Scholar]
  25. Szallies A., Kubata B. K., Duszenko M. 2002; A metacaspase of Trypanosoma brucei causes loss of respiration competence and clonal death in the yeast Saccharomyces cerevisiae . FEBS Lett 517:144–150 [CrossRef]
    [Google Scholar]
  26. Yardley V., Croft S. L. 2000; A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis. Int J Antimicrob Agents 13:243–248 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47114-0
Loading
/content/journal/jmm/10.1099/jmm.0.47114-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed