1887

Abstract

Germfree transgenic epsilon 26 mice (Tgϵ26), deficient in natural killer cells and T cells, were colonized (alimentary tract) with wild-type or each of two hyphal transcription factor signalling mutant strains (, ). Each strain colonized the alimentary tract, infected keratinized gastric tissues to a similar extent, and induced a granulocyte-dominated inflammatory response in infected tissues. Both wild-type and mutant strains formed hyphae and were able to elicit an increase in cytokine [tumour necrosis factor alpha, interleukin (IL)-10 and IL-12] and chemokine (KC and macrophage inflammatory protein-2] mRNAs in infected tissues; however, administration of the wild-type strain was lethal for the Tgϵ26 mice, whereas the mice colonized with the mutant strains survived. Death of the Tgϵ26-colonized mice appeared to be due to occlusive oesophageal candidiasis, and not to disseminated candidiasis of endogenous origin. In contrast, the mutant strains exhibited a significantly reduced capacity to infect (frequency and severity) oro-oesophageal (tongue and oesophagus) tissues. Therefore, the two hyphal signalling-defective mutants were less able to infect oro-oesophageal tissues and were non-lethal, but retained their ability to colonize the alimentary tract with yeast and hyphae, infect keratinized gastric tissues, and evoke an inflammatory response in orogastric tissues.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47110-0
2007-09-01
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/9/1138.html?itemId=/content/journal/jmm/10.1099/jmm.0.47110-0&mimeType=html&fmt=ahah

References

  1. Andrutis K. A., Riggle P. J., Kumamoto C. A., Tzipori S. 2000; Intestinal lesions associated with disseminated candidiasis in an experimental animal model. J Clin Microbiol 38:2317–2323
    [Google Scholar]
  2. Balish E., Warner T., Pierson C. J., Bock D. M., Wagner R. D. 2001; Oroesophageal candidiasis is lethal for transgenic mice with combined natural killer and T-cell defects. Med Mycol 39:261–268 [CrossRef]
    [Google Scholar]
  3. Balish E., Warner T. F., Nicholas P. J., Paulling E. E., Westwater C., Schofield D. A. 2005; Susceptibility of germfree phagocyte oxidase- and nitric oxide synthase 2-deficient mice, defective in the production of reactive metabolites of both oxygen and nitrogen, to mucosal and systemic candidiasis of endogenous origin. Infect Immun 73:1313–1320 [CrossRef]
    [Google Scholar]
  4. Bendel C. M., Hess D. J., Garni R. M., Henry-Stanley M., Wells C. L. 2003; Comparative virulence of Candida albicans yeast and filamentous forms in orally and intravenously inoculated mice. Crit Care Med 31:501–507 [CrossRef]
    [Google Scholar]
  5. Braun B. R., Head W. S., Wang M. X., Johnson A. D. 2000; Identification and characterization of TUP1 -regulated genes in Candida albicans . Genetics 15631–44
    [Google Scholar]
  6. Cantorna M. T., Balish E. 1990; Mucosal and systemic candidiasis in congenitally immunodeficient mice. Infect Immun 58:1093–1100
    [Google Scholar]
  7. Cantorna M., Mook D., Balish E. 1990; Resistance of congenitally immunodeficient gnotobiotic mice to vaginal candidiasis. Infect Immun 58:3813–3815
    [Google Scholar]
  8. Chen J., Zhou S., Wang Q., Chen X., Pan T., Liu H. 2000; Crk1, a novel Cdc2-related protein kinase, is required for hyphal development and virulence in Candida albicans . Mol Cell Biol 208696–8708 [CrossRef]
    [Google Scholar]
  9. Dieterich C., Schandar M., Noll M., Johannes F. J., Brunner H., Graeve T., Rupp S. 2002; In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion. Microbiology 148:497–506
    [Google Scholar]
  10. Edmond M. B., Wallace S. E., McClish D. K., Pfaller M. A., Jones R. N., Wenzel R. P. 1999; Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29:239–244 [CrossRef]
    [Google Scholar]
  11. Felk A., Kretschmar M., Albrecht A., Schaller M., Beinhauer S., Nichterlein T., Sanglard D., Korting H. C., Schafer W., Hube B. 2002; Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun 70:3689–3700 [CrossRef]
    [Google Scholar]
  12. Fidel P., Finkel-Jimenez B. 2006; Site specific mucosal immunity to fungi: lessons learned from Candida albicans applied to other fungi. In Molecular Principles of Fungal Pathogenesis pp 505–526 Edited by Heitman J., Filler S., Edwards J., Mitchell A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Kim A. S., Garni R. M., Henry-Stanley M. J., Bendel C. M., Erlandsen S. L., Wells C. L. 2003; Hypoxia and extraintestinal dissemination of Candida albicans yeast forms. Shock 19:257–262 [CrossRef]
    [Google Scholar]
  14. Lo H. J., Kohler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949 [CrossRef]
    [Google Scholar]
  15. Marco F., Lockhart S. R., Pfaller M. A., Pujol C., Rangel-Frausto M. S., Wiblin T., Blumberg H. M., Edwards J. E., Jarvis W. other authors 1999; Elucidating the origins of nosocomial infections with Candida albicans by DNA fingerprinting with the complex probe Ca3. J Clin Microbiol 37:2817–2828
    [Google Scholar]
  16. Pfaller M. A. 1995; Epidemiology of candidiasis. J Hosp Infect 30:Suppl.329–338 [CrossRef]
    [Google Scholar]
  17. Riggle P. J., Andrutis K. A., Chen X., Tzipori S. R., Kumamoto C. A. 1999; Invasive lesions containing filamentous forms produced by a Candida albicans mutant that is defective in filamentous growth in culture. Infect Immun 67:3649–3652
    [Google Scholar]
  18. Sanglard D. 2002; Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol 5:379–385 [CrossRef]
    [Google Scholar]
  19. Saville S. P., Lazzell A. L., Monteagudo C., Lopez-Ribot J. L. 2003; Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060 [CrossRef]
    [Google Scholar]
  20. Schaller M., Korting H. C., Borelli C., Hamm G., Hube B. 2005; Candida albicans-s ecreted aspartic proteinases modify the epithelial cytokine response in an in vitro model of vaginal candidiasis. Infect Immun 73:2758–2765 [CrossRef]
    [Google Scholar]
  21. Schofield D. A., Westwater C., Warner T., Nicholas P. J., Paulling E. E., Balish E. 2003; Hydrolytic gene expression during oroesophageal and gastric candidiasis in immunocompetent and immunodeficient gnotobiotic mice. J Infect Dis 188:591–599 [CrossRef]
    [Google Scholar]
  22. Schofield D. A., Westwater C., Balish E. 2004; β -Defensin expression in immunocompetent and immunodeficient germfree and Candida albicans -monoassociated mice. J Infect Dis 190:1327–1334 [CrossRef]
    [Google Scholar]
  23. Schofield D. A., Westwater C., Balish E. 2005; Divergent chemokine, cytokine and β -defensin responses to gastric candidiasis in immunocompetent C57BL/6 and BALB/c mice. J Med Microbiol 54:87–92 [CrossRef]
    [Google Scholar]
  24. Staib P., Kretschmar M., Nichterlein T., Hof H., Morschhauser J. 2002; Transcriptional regulators Cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection. Infect Immun 70:921–927 [CrossRef]
    [Google Scholar]
  25. van der Graaf C. A., Netea M. G., Verschueren I., van der Meer J. W., Kullberg B. J. 2005; Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect Immun 73:7458–7464 [CrossRef]
    [Google Scholar]
  26. Villar C. C., Kashleva H., Mitchell A. P., Dongari-Bagtzoglou A. 2005; Invasive phenotype of Candida albicans affects the host proinflammatory response to infection. Infect Immun 73:4588–4595 [CrossRef]
    [Google Scholar]
  27. Voss A., Hollis R. J., Pfaller M. A., Wenzel R. P., Doebbeling B. N. 1994; Investigation of the sequence of colonization and candidemia in nonneutropenic patients. J Clin Microbiol 32:975–980
    [Google Scholar]
  28. Wang B., Biron C., She J., Higgins K., Sunshine M. J., Lacy E., Lonberg N., Terhorst C. 1994; A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3E gene. Proc Natl Acad Sci U S A 91:9402–9406 [CrossRef]
    [Google Scholar]
  29. Wenzel R. P. 1995; Nosocomial candidemia: risk factors and attributable mortality. Clin Infect Dis 20:1531–1534 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47110-0
Loading
/content/journal/jmm/10.1099/jmm.0.47110-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error